Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49299-49311, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843052

RESUMO

A noncovalent integration of nanosheets of molybdenum disulfide (MoS2) and the zinc porphyrin complex Zn(II) 5,10,15,20-tetrakis(4-carboxyphenyl)porphine (ZnTCPP) through coordination bonding with metal clusters of zinc acetate (Zn[OAc]2) was applied for synthesis of stable hybrid nanomaterial avoiding surface prefunctionalization. The X-ray powder diffraction in combination with the BET nitrogen adsorption method confirms formation of a ZnTCPP-based surface-attached metal-organic framework (SURMOF) with micropores of 1.63 nm on the MoS2 nanosheets. Fluorescence spectroscopy confirmed Forster resonance energy transfer (FRET) between MoS2 and ZnTCPP without contact quenching. Fluorescent trapping with terephthalic acid for hydroxyl radicals and Sensor Green for singlet oxygen was applied for studying the pathways of photodegradation of model organic pollutant 1,5-dihydroxynaphthalene (DHN) in the presence of SURMOF/MoS2. Visible light initiates sensitization through the excitation of ZnTCPP generating singlet oxygen, whereas UV-light promotes either aerobic FRET-mediated "Z scheme" or anaerobic "Type II heterojunction" mechanisms. Owing to its multimodal photochemistry, the SURMOF/MoS2 hybrid showed comparatively high photocatalytic activity in UV-assisted degradation of DHN (keffUV = 4.0 × 10-2 min-1) as well as the antibacterial activity confirmed by E. coli survival test under visible light. Noncovalent self-assembly utilizing coordination bonding in SURMOFs as supramolecular adhesive to avoid surface premodification provides a basis for new types of multicomponent nanosystems with switchable functionalities by combining different 2D materials and chromophores in one hybrid structure.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432352

RESUMO

Adsorbed natural gas (ANG) is a promising solution for improving the safety and storage capacity of low-pressure gas storage systems. The structural-energetic and adsorption properties of active carbon ACPK, synthesized from cheap peat raw materials, are presented. Calculations of the methane-ethane mixture adsorption on ACPK were performed using the experimental adsorption isotherms of pure components. It is shown that the accumulation of ethane can significantly increase the energy capacity of the ANG storage. Numerical molecular modeling of the methane-ethane mixture adsorption in slit-like model micropores has been carried out. The molecular effects associated with the displacement of ethane by methane molecules and the formation of a molecule layered structure are shown. The integral molecular adsorption isotherm of the mixture according to the molecular modeling adequately corresponds to the ideal adsorbed solution theory (IAST). The cyclic processes of gas charging and discharging from the ANG storage based on the ACPK are simulated in three modes: adiabatic, isothermal, and thermocontrolled. The adiabatic mode leads to a loss of 27-33% of energy capacity at 3.5 MPa compared to the isothermal mode, which has a 9.4-19.5% lower energy capacity compared to the thermocontrolled mode, with more efficient desorption of both methane and ethane.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34947623

RESUMO

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5-3.5 MPa) at a constant volumetric flow rate (8-18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198162

RESUMO

The present work focused on the experimental study of the performance of a scaled system of adsorbed natural gas (ANG) storage and transportation based on carbon adsorbents. For this purpose, three different samples of activated carbons (AC) were prepared by varying the size of coconut shell char granules and steam activation conditions. The parameters of their porous structure, morphology, and chemical composition were determined from the nitrogen adsorption at 77 K, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and scanning electron microscopy (SEM) measurements. The methane adsorption data measured within the temperature range from 178 to 360 K and at pressures up to 25 MPa enabled us to identify the most efficient adsorbent among the studied materials: AC-90S. The differential heats of methane adsorption on AC-90S were determined in order to simulate the gas charge/discharge processes in the ANG system using a mathematical model with consideration for thermal effects. The results of simulating the charge/discharge processes under two different conditions of heat exchange are consistent with the experimentally determined temperature distribution over a scaled ANG storage tank filled with the compacted AC-90S adsorbent and equipped with temperature sensors and heat-exchanger devices. The amounts of methane delivered from the ANG storage system employing AC-90S as an adsorbent differ from the model predictions by 4-6%. Both the experiments and mathematical modeling showed that the thermal regulation of the ANG storage tank ensured the higher rates of charge/discharge processes compared to the thermal insulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...