Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2418, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402894

RESUMO

MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate gene expression and play an important role in multiple cellular processes. A significant percentage of miRNAs are intragenic, which is often functionally related to their host genes playing either antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) mutually connected via directed paths. Both the entire network and its core possessed statistically significant non-random properties. Specifically, genes forming the core had high expression levels and low expression variance. Furthermore, the network core did not split into separate components corresponding to individual signalling or metabolic pathways, but integrated genes involved in key cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and colorectal cancer patients.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Neoplásico/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Replicação do DNA , Feminino , Genes Neoplásicos , Humanos , Redes e Vias Metabólicas/genética , MicroRNAs/metabolismo , Proteostase/genética , RNA Neoplásico/metabolismo , Análise de Sobrevida , Transcrição Gênica
2.
PLoS One ; 13(2): e0192525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29432466

RESUMO

Finding additional functional targets for combination therapy could improve the outcome for melanoma patients. In a spontaneous metastasis xenograft model of human melanoma a shRNA mediated knockdown of L1CAM more than sevenfold reduced the number of lung metastases after the induction of subcutaneous tumors for two human melanoma cell lines (MeWo, MV3). Whole genome expression arrays of the initially L1CAM high MeWo subcutaneous tumors revealed unchanged or downregulated genes involved in epithelial to mesenchymal transition (EMT) except an upregulation of Jagged 1, indicating a compensatory change in Notch signaling especially as Jagged 1 expression showed an increase in MeWo L1CAM metastases and Jagged 1 was expressed in metastases of the initially L1CAM low MV3 cells as well. Expression of 17 genes showed concordant regulation for L1CAM knockdown tumors of both cell lines. The changes in gene expression indicated changes in the EMT network of the melanoma cells and an increase in p53/p21 and p38 activity contributing to the reduced metastatic potential of the L1CAM knockdowns. Taken together, these data make L1CAM a highly interesting therapeutic target to prevent further metastatic spread in melanoma patients.


Assuntos
Técnicas de Silenciamento de Genes , Melanoma/patologia , Metástase Neoplásica/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/terapia , Camundongos , Interferência de RNA
3.
Semin Cancer Biol ; 45: 50-57, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27639751

RESUMO

The major issues hampering progress in the treatment of cancer patients are distant metastases and drug resistance to chemotherapy. Metastasis formation is a very complex process, and looking at gene signatures alone is not enough to get deep insight into it. This paper reviews traditional and novel approaches to identify gene signature biomarkers and intratumoural fluid pressure both as a novel way of creating predictive markers and as an obstacle to cancer therapy. Finally recently developed in vitro systems to predict the response of individual patient derived cancer explants to chemotherapy are discussed.


Assuntos
Biomarcadores Tumorais , Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Prognóstico , Transcriptoma , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...