Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202402109, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421344

RESUMO

This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.

2.
Angew Chem Int Ed Engl ; 63(13): e202314208, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240738

RESUMO

In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions. The key to selectivity lies in the intricate interplay between reversibility and the energy landscapes governing C-C bond formation in thiol-yne-ene reactions. The developed approach not only allows to prioritize the thiol-yne-ene cascade, dominating over alternative reactions, but also extends the scope of coupling products obtained from alkenes and alkynes of various structures and electron density distributions, regardless of their relative polarity difference, opening doors to more versatile synthetic possibilities. In the present study, we provide a powerful tool for atom-economical C-S and C-C bond formation, paving the way for the efficient synthesis of complex molecules. Carrying out our experimental and computational studies, we elucidated the fundamental mechanisms underlying radical cascades, a knowledge that can be broadly applied in the field of organic chemistry.

3.
Angew Chem Int Ed Engl ; 61(17): e202116888, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35147284

RESUMO

The first example of an intermolecular thiol-yne-ene coupling reaction is reported for the one-pot construction of C-S and C-C bonds. Thiol-yne-ene coupling opens a new dimension in building molecular complexity to access densely functionalized products. The employment of Eosin Y/DBU/MeOH photocatalytic system suppresses hydrogen atom transfer (HAT) and associative reductant upconversion (via C-S three-electron σ-bond formation). Investigation of the reaction mechanism by combining online ESI-UHRMS, EPR spectroscopy, isotope labeling, determination of quantum yield, cyclic voltammetry, Stern-Volmer measurements and computational modeling revealed a unique photoredox cycle with four radical-involving stages. As a result, previously unavailable products of the thiol-yne-ene reaction were obtained in good yields with high selectivity. They can serve as stable precursors for synthesizing synthetically demanding activated 1,3-dienes.

4.
Chem Sci ; 11(37): 10061-10070, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34094267

RESUMO

An associative electron upconversion is proposed as a key step determining the selectivity of thiol-yne coupling. The developed synthetic approach provided an efficient tool to access a comprehensive range of products - four types of vinyl sulfides were prepared in high yields and selectivity. We report practically important transition-metal-free regioselective thiol-yne addition and formation of the demanding Markovnikov-type product by a radical photoredox process. The photochemical process was directly monitored by mass-spectrometry in a specially designed ESI-MS device with green laser excitation in the spray chamber. The proposed reaction mechanism is supported by experiments and DFT calculations.

5.
Chem Sci ; 7(11): 6740-6745, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451118

RESUMO

The carbon-sulfur bond formation reaction is of paramount importance for functionalized materials design, as well as for biochemical applications. The use of expensive metal-based catalysts and the consequent contamination with trace metal impurities are challenging drawbacks of the existing methodologies. Here, we describe the first environmentally friendly metal-free photoredox pathway to the thiol-yne click reaction. Using Eosin Y as a cheap and readily available catalyst, C-S coupling products were obtained in high yields (up to 91%) and excellent selectivity (up to 60 : 1). A 3D-printed photoreactor was developed to create arrays of parallel reactions with temperature stabilization to improve the performance of the catalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...