Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 226(4): 941-51, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17520278

RESUMO

Balancing shoot apical meristem (SAM) maintenance and organ formation from its flanks is essential for proper plant growth and development and for the flexibility of organ production in response to internal and external cues. Leaves are formed at the SAM flanks and display a wide variability in size and form. Tomato (Solanum lycopersicum) leaves are compound with lobed margins. We exploited 18 recessive tomato mutants, representing four distinct phenotypic classes and six complementation groups, to track the genetic mechanisms involved in meristem function and compound-leaf patterning in tomato. In goblet (gob) mutants, the SAM terminates following cotyledon production, but occasionally partially recovers and produces simple leaves. expelled shoot (exp) meristems terminate after the production of several leaves, and these leaves show a reduced level of compoundness. short pedicel (spd) mutants are bushy, with impaired meristem structure, compact inflorescences, short pedicels and less compound leaves. In multi drop (mud) mutants, the leaves are more compound and the SAM tends to divide into two active meristems after the production of a few leaves. The range of leaf-compoundness phenotypes observed in these mutants suggests that compound-leaf patterning involves an array of genetic factors, which act successively to elaborate leaf shape. Furthermore, the results indicate that similar mechanisms underlie SAM activity and compound-leaf patterning in tomato.


Assuntos
Padronização Corporal/fisiologia , Meristema/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Homeodomínio/genética , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Meristema/ultraestrutura , Mutação , Fenótipo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética
2.
Nat Genet ; 39(6): 787-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486095

RESUMO

Plant leaves show pronounced plasticity of size and form. In the classical, partially dominant mutation Lanceolate (La), the large compound leaves of tomato (Solanum lycopersicum) are converted into small simple ones. We show that LA encodes a transcription factor from the TCP family containing an miR319-binding site. Five independent La isolates are gain-of-function alleles that result from point mutations within the miR319-binding site and confer partial resistance of the La transcripts to microRNA (miRNA)-directed inhibition. The reduced sensitivity to miRNA regulation leads to elevated LA expression in very young La leaf primordia and to precocious differentiation of leaf margins. In contrast, downregulation of several LA-like genes using ectopic expression of miR319 resulted in larger leaflets and continuous growth of leaf margins. Our results imply that regulation of LA by miR319 defines a flexible window of morphogenetic competence along the developing leaf margin that is required for leaf elaboration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Folhas de Planta/genética , Solanum lycopersicum/genética , Primers do DNA/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...