Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Rev Immunol ; 39(4): 153-162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32347747

RESUMO

The current COVID-19 pandemic is one of the most devastating events in recent history. The virus causes relatively minor damage to young, healthy populations, imposing life-threatening danger to the elderly and people with diseases of chronic inflammation. Therefore, if we could reduce the risk for vulnerable populations, it would make the COVID-19 pandemic more similar to other typical outbreaks. Children don't suffer from COVID-19 as much as their grandparents and have a much higher melatonin level. Bats are nocturnal animals possessing high levels of melatonin, which may contribute to their high anti-viral resistance. Viruses induce an explosion of inflammatory cytokines and reactive oxygen species, and melatonin is the best natural antioxidant that is lost with age. The programmed cell death coronaviruses cause, which can result in significant lung damage, is also inhibited by melatonin. Coronavirus causes inflammation in the lungs which requires inflammasome activity. Melatonin blocks these inflammasomes. General immunity is impaired by anxiety and sleep deprivation. Melatonin improves sleep habits, reduces anxiety and stimulates immunity. Fibrosis may be the most dangerous complication after COVID-19. Melatonin is known to prevent fibrosis. Mechanical ventilation may be necessary but yet imposes risks due to oxidative stress, which can be reduced by melatonin. Thus, by using the safe over-the-counter drug melatonin, we may be immediately able to prevent the development of severe disease symptoms in coronavirus patients, reduce the severity of their symptoms, and/or reduce the immuno-pathology of coronavirus infection on patients' health after the active phase of the infection is over.


Assuntos
Antioxidantes/administração & dosagem , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Melatonina/administração & dosagem , Medicamentos sem Prescrição/administração & dosagem , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Fatores Etários , Idoso , Envelhecimento/imunologia , Animais , Betacoronavirus/patogenicidade , COVID-19 , Quirópteros/imunologia , Quirópteros/virologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Fotoperíodo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2
2.
Vet Comp Oncol ; 17(4): 570-577, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31332942

RESUMO

Recent studies highlighted the role of autophagy as a cardinal regulatory system for homeostasis and cancer-related signalling pathways. In this context, the deregulated expression of p62 - Sequestosome1 (p62/SQSTM1) - a protein acting both as an autophagy receptor and signalling hub, has been associated with tumour development and chronic inflammation. Multiple clinical studies test drugs targeting autophagy, and even more research is on the way to clinical trials. However, no comparative investigations have been carried out to identify adequate preclinical models to assess p62-based medicine. In veterinary oncology the role of p62 in cancer-related pathways has been largely ignored. We compared p62 sequences in multiple organisms and found that canine p62 significantly diverges from the humans and from other animals sequences. Then, we chart by immunohistochemistry the expression levels of p62 in canine mammary tumours. A total of 66 tumours and 10 non-neoplastic mammary samples were examined. The expression of p62 was higher in normal tissue and adenomas than carcinomas, with lowest levels of p62 protein detected in high grade carcinomas. In all cases examined the tumour stroma appeared to be p62-negative. Taken together our results would suggest that in dogs the association between p62 expression and cancer cells overturns that reported in human breast carcinoma, where p62 accumulates in malignant cells as compared to normal epithelium. Thus, at least in canine mammary tumours, p62 should be not considered a tumour-rejection antigen for an anti-cancer immunotherapy.


Assuntos
Evolução Biológica , Doenças do Cão/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Antineoplásicos/farmacologia , Doenças do Cão/genética , Cães , Sistemas de Liberação de Medicamentos , Feminino , Neoplasias Mamárias Animais/genética , Filogenia , Proteína Sequestossoma-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...