Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 11(1): 74-85, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32002125

RESUMO

High level of the multifunctional AAA-ATPase p97/VCP is often correlated to the development of cancer; however, the underlying mechanism is not understood completely. Here, we report a novel function of p97/VCP in actin regulation and cell motility. We found that loss of p97/VCP promotes stabilization of F-actin, which cannot be reversed by actin-destabilizing agent, Cytochalasin D. Live-cell imaging demonstrated reduced actin dynamics in p97/VCP-knockdown cells, leading to compromised cell motility. We further examined the underlying mechanism and found elevated RhoA protein levels along with increased phosphorylation of its downstream effectors, ROCK, LIMK, and MLC upon the knockdown of p97/VCP. Since p97/VCP is indispensable in the ubiquitination-dependent protein degradation pathway, we investigated if the loss of p97/VCP hinders the protein degradation of RhoA. Knockdown of p97/VCP resulted in a higher amount of ubiquitinated RhoA, suggesting p97/VCP involvement in the proteasome-dependent protein degradation pathway. Finally, we found that p97/VCP interacts with FBXL19, a molecular chaperone known to guide ubiquitinated RhoA for proteasomal degradation. Reduction of p97/VCP may result in the accumulation of RhoA which, in turn, enhances cytoplasmic F-actin formation. In summary, our study uncovered a novel function of p97/VCP in actin regulation and cell motility via the Rho-ROCK dependent pathway which provides fundamental insights into how p97/VCP is involved in cancer development.

2.
Nat Commun ; 10(1): 5751, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848352

RESUMO

The poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reparo do DNA/genética , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/isolamento & purificação , Biocatálise , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Epigênese Genética , Histonas/síntese química , Histonas/ultraestrutura , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/isolamento & purificação , Poli ADP Ribosilação/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Biochem Biophys Res Commun ; 513(3): 714-720, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987826

RESUMO

Pellino1 is an E3 ubiquitin ligase that plays a key role in positive regulation of innate immunity signaling, specifically required for the production of interferon when induced by viral double-stranded RNA. We report the identification of the tumor suppressor protein, p53, as a binding partner of Pellino1. Their interaction has a Kd of 42 ±â€¯2 µM and requires phosphorylation of Thr18 within p53 and association with the forkhead-associated (FHA) domain of Pellino1. We employed laser micro-irradiation and live cell microscopy to show that Pellino1 is recruited to newly occurring DNA damage sites, via its FHA domain. Mutation of a hitherto unidentified nuclear localization signal within the N-terminus of Pellino1 led to its exclusion from the nucleus. This study provides evidence that Pellino1 translocates to damaged DNA in the nucleus and has a functional role in p53 signaling and the DNA damage response.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Nucleares/análise , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Supressora de Tumor p53/análise , Ubiquitina-Proteína Ligases/análise
4.
Sci Rep ; 7(1): 14816, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093465

RESUMO

Vaults are naturally occurring ovoid nanoparticles constructed from a protein shell that is composed of multiple copies of major vault protein (MVP). The vault-interacting domain of vault poly(ADP-ribose)-polymerase (INT) has been used as a shuttle to pack biomolecular cargo in the vault lumen. However, the interaction between INT and MVP is poorly understood. It is hypothesized that the release rate of biomolecular cargo from the vault lumen is related to the interaction between MVP and INT. To tune the release of molecular cargos from the vault nanoparticles, we determined the interactions between the isolated INT-interacting MVP domains (iMVP) and wild-type INT and compared them to two structurally modified INT: 15-amino acid deletion at the C terminus (INTΔC15) and histidine substituted at the interaction surface (INT/DSA/3 H) to impart a pH-sensitive response. The apparent affinity constants determined using surface plasmon resonance (SPR) biosensor technology are 262 ± 4 nM for iMVP/INT, 1800 ± 160 nM for iMVP/INTΔC15 at pH 7.4. The INT/DSA/3 H exhibits stronger affinity to iMVP (K Dapp = 24 nM) and dissociates at a slower rate than wild-type INT at pH 6.0.


Assuntos
Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Concentração de Íons de Hidrogênio , Modelos Moleculares , Poli(ADP-Ribose) Polimerases/química , Domínios e Motivos de Interação entre Proteínas , Ratos , Partículas de Ribonucleoproteínas em Forma de Abóbada/química
5.
Expert Opin Drug Deliv ; 14(8): 913-925, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28643528

RESUMO

BACKGROUND: This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. METHODS: Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. RESULTS: The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. CONCLUSIONS: The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.


Assuntos
Quitosana/química , Hidrogéis/química , Ranibizumab/química , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Proteínas Recombinantes de Fusão/química , Quitosana/administração & dosagem , Quitosana/farmacologia , Liberação Controlada de Fármacos , Olho/patologia , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Neovascularização Patológica/tratamento farmacológico , Ranibizumab/administração & dosagem , Ranibizumab/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1525-1536, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641978

RESUMO

Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5ß1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Transportador de Glucose Tipo 2/genética , Integrina alfa5beta1/genética , Neoplasias Hepáticas/genética , Neoplasias Gástricas/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Anoikis/genética , Movimento Celular/genética , Proliferação de Células/genética , Dicroísmo Circular , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Células Hep G2 , Humanos , Integrina alfa5beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Invasividade Neoplásica/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 291(51): 26540-26553, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27784787

RESUMO

Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.


Assuntos
Amiloide/biossíntese , Proteínas de Bactérias/biossíntese , Biofilmes/efeitos dos fármacos , Catequina/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Benzotiazóis , Biofilmes/crescimento & desenvolvimento , Catequina/farmacologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Tiazóis/farmacologia
8.
J Am Chem Soc ; 138(1): 402-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26684612

RESUMO

Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated for in vivo imaging of P. aeruginosa in implant and corneal infection mice models.


Assuntos
Amiloide/química , Biofilmes , Corantes Fluorescentes , Pseudomonas aeruginosa/química
9.
Angew Chem Int Ed Engl ; 54(49): 14664-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26473750

RESUMO

One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins.


Assuntos
Complexos de Proteínas Captadores de Luz/biossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Polímeros/metabolismo , Sistema Livre de Células , Clorofila/química , Clorofila/metabolismo , Fluorescência , Complexos de Proteínas Captadores de Luz/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Polímeros/química , Espectrometria de Fluorescência
10.
PLoS One ; 10(4): e0123167, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901570

RESUMO

MicroRNAs (miRNAs) are known to play a part in regulating important cellular processes. They generally perform their regulatory function through their binding with mRNAs, ultimately leading to a repression of target protein expression levels. However, their roles in cellular processes are poorly understood due to the limited understanding of their specific cellular targets. Aberrant levels of miRNAs have been found in hepatocellular carcinoma (HCC) including miR-181a. Using bioinformatics analysis, cyclin-dependent kinase inhibitor 1B (CDKN1ß) and transcriptional factor E2F7 were identified as potential targets of miR-181a. Validation analysis using surface plasmon resonance (SPR) showed a positive binding between miR-181a and the 3'UTRs of these two potential mRNA targets. In vivo luciferase assay further confirmed the positive miR-181a:mRNA bindings, where a significant decrease in luciferase activity was detected when HepG2 cells were co-transfected with the 3'UTR-containing reporter plasmids and miR-181a. The potential impact of miR-181a binding to its specific targets on the general cellular behavior was further investigated. Results showed that miR-181a significantly activated the MAPK/JNK pathway which regulates cell proliferation, supporting our recently reported findings. Inhibition of miR-181a, on the other hand, abolished the observed activation. Our findings open up a new approach in designing targeted functional analysis of miRNAs in cellular processes, through the identification of their cellular targets.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição E2F7/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Smad/metabolismo
11.
Nat Immunol ; 16(5): 505-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751747

RESUMO

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Assuntos
Núcleo Celular/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Complexo Repressor Polycomb 2/metabolismo , Talina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/genética , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Ativação Linfocitária/genética , Metilação , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Talina/genética , Migração Transendotelial e Transepitelial/genética
12.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25586180

RESUMO

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Assuntos
Amiloide/química , Biofilmes , Pseudomonas aeruginosa/química , Percepção de Quorum/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Amiloide/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Dobramento de Proteína , Pseudomonas aeruginosa/genética
13.
J Virol ; 89(7): 3471-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589636

RESUMO

UNLABELLED: Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short ß-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE: NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal molecular details of how flavivirus NS3 protein cooperates with NS4B within the RC. In addition, this study has established the rationale and assays to search for inhibitors disrupting the NS3-NS4B interaction for antiviral drug discovery.


Assuntos
Vírus da Dengue/fisiologia , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
J Infect Dis ; 210(10): 1616-26, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24864124

RESUMO

Malaria causes nearly 1 million deaths annually. Recent emergence of multidrug resistance highlights the need to develop novel therapeutic interventions against human malaria. Given the involvement of sugar binding plasmodial proteins in host invasion, we set out to identify such proteins as targets of small glycans. Combining multidisciplinary approaches, we report the discovery of a small molecule inhibitor, NIC, capable of inhibiting host invasion through interacting with a major invasion-related protein, merozoite surface protein-1 (MSP-1). This interaction was validated through computational, biochemical, and biophysical tools. Importantly, treatment with NIC prevented host invasion by Plasmodium falciparum and Plasmodium vivax--major causative organisms of human malaria. MSP-1, an indispensable antigen critical for invasion and suitably localized in abundance on the merozoite surface represents an ideal target for antimalarial development. The ability to target merozoite invasion proteins with specific small inhibitors opens up a new avenue to target this important pathogen.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Endocitose/efeitos dos fármacos , Proteína 1 de Superfície de Merozoito/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Humanos
15.
Methods Mol Biol ; 1138: 271-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24696343

RESUMO

Surface plasmon resonance (SPR) biosensors have become the mainstream method for biomolecular interaction analysis. It offers many advantages over conventional methods by its label-free, real-time monitoring, low sample consumption, high throughput, and remarkable sensitivity. We have examined dengue virus protein interactions in the context of antibody affinity measurement, protein-protein interaction, and in the screening of small molecule inhibitors as well as the characterization of the interactions between the small molecule binders and the relevant dengue protein. Here we describe the basic methods involved in performing SPR assays as well as in data processing and evaluation using some examples of dengue proteins.


Assuntos
Técnicas Biossensoriais/métodos , Vírus da Dengue/metabolismo , Proteínas Virais/metabolismo , Soluções Tampão , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica
16.
Hum Mol Genet ; 23(17): 4569-80, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24722204

RESUMO

MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.


Assuntos
Ansiedade/genética , Hipertensão/genética , MicroRNAs/metabolismo , Acetilcolinesterase/genética , Alelos , Animais , Sequência de Bases , Pressão Sanguínea , Encéfalo/metabolismo , Feminino , Predisposição Genética para Doença , Voluntários Saudáveis , Heterozigoto , Homozigoto , Humanos , Hidrocortisona/sangue , Hipertensão/sangue , Hipertensão/fisiopatologia , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Primatas/genética , Especificidade da Espécie , Proteína cdc42 de Ligação ao GTP/metabolismo
17.
PLoS One ; 8(10): e77984, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205053

RESUMO

Mechanosensitive channels (MS) are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.


Assuntos
Proteínas Arqueais/química , Anticorpos de Domínio Único/química , Animais , Proteínas Arqueais/imunologia , Proteínas Arqueais/metabolismo , Camelídeos Americanos , Cristalografia por Raios X , Mecanotransdução Celular , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Thermoplasma/química
18.
Nucleic Acids Res ; 41(13): 6664-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658228

RESUMO

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2'-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine-purine-pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2'-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA.


Assuntos
Oligonucleotídeos/química , RNA de Cadeia Dupla/química , DNA/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Cloreto de Sódio/química , Tionucleotídeos/química , Uridina/química
19.
PLoS One ; 8(1): e53979, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23320111

RESUMO

STIM1 is a Ca(2+) sensor within the ER membrane known to activate the plasma membrane store-operated Ca(2+) channel upon depletion of its target ion in the ER lumen. This activation is a crucial step to initiate the Ca(2+) signaling cascades within various cell types. Human STIM1 is a 77.4 kDa protein consisting of various domains that are involved in Ca(2+) sensing, oligomerization, and channel activation and deactivation. In this study, we identify the domains and boundaries in which functional and stable recombinant human STIM1 can be produced in large quantities. To achieve this goal, we cloned nearly 200 constructs that vary in their initial and terminal residues, length and presence of the transmembrane domain, and we conducted expression and purification analyses using these constructs. The results revealed that nearly half of the constructs could be expressed and purified with high quality, out of which 25% contained the integral membrane domain. Further analyses using surface plasmon resonance, nuclear magnetic resonance and a thermostability assay verified the functionality and integrity of these constructs. Thus, we have been able to identify the most stable and well-behaved domains of the hSTIM1 protein, which can be used for future in vitro biochemical and biophysical studies.


Assuntos
Proteínas de Membrana/química , Proteínas de Neoplasias/química , Sequência de Aminoácidos , Sinalização do Cálcio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Molécula 1 de Interação Estromal , Relação Estrutura-Atividade
20.
PLoS One ; 7(12): e50490, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226521

RESUMO

p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Ligação Competitiva , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Fluorometria , Hidrólise , Cinética , Proteínas Nucleares/química , Conformação Proteica , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...