Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(27): 18576-18585, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935606

RESUMO

Mixed-cation and mixed-halide lead halide perovskites show great potential for their application in photovoltaics. Many of the high-performance compositions are made of cesium, formamidinium, lead, iodine, and bromine. However, incorporating bromine in iodine-rich compositions and its effects on the thermal stability of the perovskite structure has not been thoroughly studied. In this work, we study how replacing iodine with bromine in the state-of-the-art Cs0.17FA0.83PbI3 perovskite composition leads to different dynamics in the phase transformations as a function of temperature. Through a combination of structural characterization, cathodoluminescence mapping, X-ray photoelectron spectroscopy, and first-principles calculations, we reveal that the incorporation of bromine reduces the thermodynamic phase stability of the films and shifts the products of phase transformations. Our results suggest that bromine-driven vacancy formation during high temperature exposure leads to irreversible transformations into PbI2, whereas materials with only iodine go through transformations into hexagonal polytypes, such as the 4H-FAPbI3 phase. This work sheds light on the structural impacts of adding bromine on thermodynamic phase stability and provides new insights into the importance of understanding the complexity of phase transformations and secondary phases in mixed-cation and mixed-halide systems.

2.
Genome Res ; 16(9): 1159-68, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16951135

RESUMO

Previous approaches to comparing gene and chromosome organization between two genomes have been based on genetic maps or genomic sequences. We have developed a system to align an FPC-based physical map to a genomic sequence based on BAC end sequences and sequence-tagged hybridization markers and to align two FPC maps to one another based on shared markers and fingerprints. The system, called SyMAP (Synteny Mapping and Analysis Program), consists of an algorithm to compute synteny blocks and Web-based graphics to visualize the results. The approach to calculating the anchors (corresponding elements on the respective maps) maximizes the inclusion of anchors with different rates of divergence. Chains (putative syntenic sets of anchors) are computed using a dynamic programming algorithm, which includes off-diagonal anchors that result from map coordinate errors and small inversions. As the gap parameters (the distances allowed between anchors in a chain) can vary over different data sets and be difficult to set manually, they are automatically computed per data set. The criterion for a chain to be acceptable is based on the number of anchors and the Pearson correlation coefficient. Neighboring chains are merged into synteny blocks for display. This algorithm has been tested with three data sets that vary in the number of BACs, BAC end sequences, hybridization markers, distance between anchors, and number and antiquity of genome duplication events. The Web-based graphics uses Java for a highly interactive display that allows the user to interrogate the evidence of synteny.


Assuntos
Algoritmos , Biologia Computacional/métodos , Mapeamento Físico do Cromossomo , Sintenia , Gráficos por Computador , Genoma de Planta , Internet , Alinhamento de Sequência , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...