Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30176, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765171

RESUMO

This investigation aims to study the effect of laser cladding parameters on the microstructure of Stellite 6 on the X19CrMoNbVN11-1 stainless-steel substrate. First, Stellite 6 powder was coated on the X19CrMoNbVN11-1 substrate using the laser cladding method. The effect of laser cladding parameters (i.e., laser power, scanning speed, and powder feed rate) was studied on the microstructure of deposits. The secondary dendritic arm spacing was assessed, and the structural defects were studied (e.g., lack of bonding, porosity, and crack). The results revealed that the microstructure has changed from coating/substrate interface to coating surface, from plate-cellular to columnar and equiaxed dendrites. Also, an increase in the laser power increased the cellular structure in the coating/substrate interface and equiaxed dendrites in the coating surface. The cooling rate (G × R) increased by increasing the scanning and powder injection rates. The microstructure of the Stellite 6 was composed of cobalt solid-solution γFCC.

2.
Heliyon ; 9(12): e23094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144350

RESUMO

This research study was conducted to investigate the laser melting parameters of NiCrAlY-APS coating. High-temperature oxidation was investigated using yttria partially stabilized zirconia (YSZ) ceramic coating. Also, the oxidation behavior of the TBC coating was investigated and studied before to and after laser surface melting of the NiCrAlY coating. Microstructural characterization was done using a scanning electron microscope (SEM), elemental analysis by energy dispersive spectroscopy (EDS), and phase analysis by X-ray diffraction (XRD). Surface melting was then performed in the power range of 150-300 W and scanning speed of 2-6 mm s-1. Surface melting was also conducted on the coating using two strategies: single-pass and multi-pass. The obtained results showed that the average melting depth and thickness reduction were directly related to the laser power, while they had an inverse relation with the laser scanning speed. Furthermore, multi-pass surface melting parameters reduced porosity to less than 0.1 %. Roughness measurements also showed a decrease in the coating's surface hardness after surface melting, as compared to the APS coating. The structure consisted of oriented columnar dendrites after melting the laser. The adhesion strength of the TBC coating and laser surface melting coating was at 41 MPa and 53 MPa, respectively. After 200 h of oxidation in the G1504 sample, the TGO layer's growth was decreased; due to the growth of a single oxide layer, it had better oxidation resistance in comparison to the other sample.

3.
Heliyon ; 9(9): e19791, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809515

RESUMO

In the present study, the tensile strength, fracture surface, hardness, and amount of residual stress in Inconel 625 super alloy cladded with direct metal deposition (DLD) process in the states before and after stress relief was studied. Residual stresses on the cladding layer surface were determined via XRD method. According to results, the yield strength of Am sample increased by 10% compared to thecast sample (reference sample). Although the yield strength experiebced an increase, the ductility followed an opposite trend falling from 42.5% to 26%. According to residual stress test outcomes, tensile residual stress of 361 MPa in the additive-manufactured sample. After stress relaxation heat treatment and almost complete removal of residual stress, the ductility reached 52.5%, the ultimate strength was also improved by 17% from cast sample. Also, after stress relaxation, the hardness of the sample and its fluctuations are reduced.

4.
Ultrason Sonochem ; 38: 306-316, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633831

RESUMO

In this research, solvent based polyamide - imide (PAI)/clay nanocomposites were prepared successfully using the solution dispersion technique. With the assistance of the ultrasonic wave, the effect of the ultrasonic wave time on the microstructure of 3wt% PAI/C20A nanocomposite (NC) was investigated. Then, the best ultrasonic parameters were selected and the effects of the concentration of Cloisite 20A (C20A) (1, 3 and 5wt% C20A) on the microstructure and mechanical properties (adhesion, hardness, flexibility, wear and impact) of NCs were investigated. The PAI, C20A and nanocomposites (NC)s were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Wide-angle X-ray diffraction (WAXD). The results showed that the sample with 1 and 3wt% C20A had better mechanical properties, as compared to the pure PAI and the 5wt% NC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...