Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 7(67): eabl7286, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648845

RESUMO

An electronic skin (e-skin) for the next generation of robots is expected to have biological skin-like multimodal sensing, signal encoding, and preprocessing. To this end, it is imperative to have high-quality, uniformly responding electronic devices distributed over large areas and capable of delivering synaptic behavior with long- and short-term memory. Here, we present an approach to realize synaptic transistors (12-by-14 array) using ZnO nanowires printed on flexible substrate with 100% yield and high uniformity. The presented devices show synaptic behavior under pulse stimuli, exhibiting excitatory (inhibitory) post-synaptic current, spiking rate-dependent plasticity, and short-term to long-term memory transition. The as-realized transistors demonstrate excellent bio-like synaptic behavior and show great potential for in-hardware learning. This is demonstrated through a prototype computational e-skin, comprising event-driven sensors, synaptic transistors, and spiking neurons that bestow biological skin-like haptic sensations to a robotic hand. With associative learning, the presented computational e-skin could gradually acquire a human body-like pain reflex. The learnt behavior could be strengthened through practice. Such a peripheral nervous system-like localized learning could substantially reduce the data latency and decrease the cognitive load on the robotic platform.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Condicionamento Clássico , Eletrônica , Humanos , Neurônios
2.
IEEE Trans Biomed Circuits Syst ; 15(6): 1174-1185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35007198

RESUMO

This paper presents ISFET array based pH-sensing system-on-ultra-thin-chip (SoUTC) designed and fabricated in 350 nm CMOS technology. The SoUTC with the proposed current-mode active-pixel ISFET circuit array is desined to operate at 2 V and consumes 6.28 µW per-pixel. The presented SoUTC exhibits low sensitivity to process, voltage, temperature and strain-induced (PVTS) variations. The silicon area occupancy of each active-pixel is 44.9 × 33.5 µm2 with an ion-sensing area of 576 µm2. The design of presented ISFET device is analysed with finite element modeling in COMSOL Multiphysics using compact model parameters of MOSFET in 350 nm CMOS technology. Owing to thin (∼30 µm) Si-substrate the presented SoUTC can conform to curvilinear surfaces, allowing intimate contact necessary for reliable data for monitoring of analytes in body fluids such as sweat. Further, it can operate either in a rolling shutter fashion or in a pseudo-random pixel selection mode allowing the simultaneous detection of pH from different skin regions. Finally, the circuits have been tested in aqueous Dulbecco's Modified Eagle Medium (DMEM) culture media with 5-9 pH values, which mimics cellular environments, to demonstrate their potential use for continuous monitoring of body-fluids pH.


Assuntos
Líquidos Corporais , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...