Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(3): 542-548, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439242

RESUMO

The pressor response induced by a voluntary hypoxic apnea is mediated largely by increased sympathetic outflow. The neural control of blood pressure is altered in recovery from acute heat exposure, but its effect on the pressor response to a voluntary hypoxic apnea has never been explored. Therefore, we tested the hypothesis that prior heat exposure would attenuate the pressor response induced by a voluntary hypoxic apnea. Eleven healthy adults (five women) were exposed to whole body passive heating (water-perfused suit) sufficient to increase body core temperature by 1.2°C. Voluntary hypoxic apneas were performed at baseline and in recovery when body core temperature returned to ≤ 0.3°C of baseline. Participants breathed gas mixtures of varying [Formula: see text] (21%, 16%, and 12%; randomized) for 1 min followed by a 15-s end-expiratory apnea. The change in arterial oxygen saturation during each apnea did not differ from baseline to recovery (P = 0.6 for interaction), whereas the pressor response induced by a voluntary hypoxia apnea was reduced ([Formula: see text] 21%, baseline 17 ± 7 mmHg vs. recovery 14 ± 7 mmHg; [Formula: see text] 16%, baseline 24 ± 8 mmHg vs. recovery 18 ± 7 mmHg; [Formula: see text] 12%, baseline 28 ± 11 mmHg vs. recovery 24 ± 11 mmHg; P = 0.01 for main effect of time). These data suggest that prior heat exposure induces a cross-stressor effect such that the pressor response to a voluntary hypoxic apnea is attenuated.NEW & NOTEWORTHY The pressor response induced by a voluntary hypoxic apnea is mediated by increased sympathetic outflow. The neural control of blood pressure is altered in recovery from acute heat exposure, but its effect on the pressor response to a voluntary hypoxic apnea has never been explored. Our data suggest that prior heat exposure induces a cross-stressor effect such that the pressor response to a voluntary hypoxic apnea is attenuated.


Assuntos
Apneia , Temperatura Alta , Adulto , Humanos , Feminino , Sistema Nervoso Simpático/fisiologia , Pressão Sanguínea/fisiologia , Hipóxia
2.
J Appl Physiol (1985) ; 132(1): 199-208, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941435

RESUMO

Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under three experimental conditions: 1) thermoneutral control; 2) whole body heat exposure to increase body core temperature by 1.2°C; and 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s-1), but not for thermoneutral control (140 ± 63 s-1; P < 0.01 vs. heat exposure) nor for heat + brachial artery compression (139 ± 60 s-1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9% vs. post-I/R, 3.8 ± 2.9%; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9% vs. post-I/R, 6.1 ± 2.9%; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 5.8 ± 2.8%; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.NEW & NOTEWORTHY Acute heat exposure protects against endothelial ischemia-reperfusion injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We utilized arterial compression to inhibit the temperature-dependent increase in brachial artery blood velocity that occurs during acute heat exposure to isolate the contribution of shear stress to the protection of endothelial function following ischemia-reperfusion injury. Our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury.


Assuntos
Temperatura Alta , Traumatismo por Reperfusão , Artéria Braquial , Endotélio Vascular , Feminino , Humanos , Traumatismo por Reperfusão/prevenção & controle , Estresse Mecânico , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...