Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(2): 766-778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995294

RESUMO

The present study used the DFT method to investigate aspirin's intermolecular interactions with boron nitride (BN) nanotubes modified with aluminum, gallium, and zinc. Our experiments obtained adsorption energy of -40.4 kJ/mol for aspirin on BN nanotubes. By doping each of the above metals on the surface of the BN nanotube, the aspirin adsorption energy increased dramatically. For BN nanotubes doped with Al, Ga, and Zn, this energy was -255, -251, and -250 kJ/mol. Thermodynamic analyses proved that all surface adsorptions are exothermic and spontaneous. Nanotubes' electronic structures and dipole moments have been examined following aspirin adsorption. In addition, AIM analysis has been performed for all systems in order to understand how the links were formed. According to the obtained results, BN nanotubes doped with metals, as mentioned previously, have a very high electron sensitivity to aspirin. These nanotubes can therefore be used to manufacture aspirin-sensitive electrochemical sensors.Communicated by Ramaswamy H. Sarma.


Assuntos
Aspirina , Nanotubos , Nanotubos/química , Compostos de Boro/química
2.
APMIS ; 129(5): 271-279, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792109

RESUMO

There is very little knowledge about the immune responses, particularly cellular immunity to coronavirus disease 2019 (COVID-19). The main objective of this study was to evaluate the frequency of T helper (Th) cell subtypes, including Th1, Th17, and Treg cells, in moderate-to-severe and critical COVID-19 patients compared to healthy controls. Twenty-nine moderate-to-severe and 13 critical patients confirmed for COVID-19, and 15 healthy subjects were included in this study. Interferon-γ (IFN-γ)-producing Th1 and interleukin-17A-producing Th17 and Treg cells in peripheral blood were measured with flow cytometry. The frequency of Th1 and Th17 was significantly decreased in critical patients compared to healthy subjects (aMD: -2.76 and - 2.34) and moderate-to-severe patients (aMD: -1.89 and - 1.89), respectively (p < 0.05). Differences were not significant between moderate-to-severe patients and healthy subjects for both Th1 (p = 0.358) and Th17 (p = 0.535), respectively. In contrast, significant difference was not observed between study subjects regarding the frequency of Treg cells. Patients with critical COVID-19 had a markedly lower Th1/Treg and Th17/Treg ratios compared with the controls and moderate-to-severe cases. Our study showed a dysregulated balance of Th1 and Th17 cells and its relation to the severity of COVID-19.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Contagem de Linfócito CD4 , COVID-19/patologia , Estado Terminal , Feminino , Citometria de Fluxo , Humanos , Interferon gama/biossíntese , Interleucina-17/biossíntese , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
5.
Environ Technol ; 39(18): 2321-2334, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28697646

RESUMO

The purpose of this article is to evaluate the effect of adsorbents and alkali pre-treatment on microorganism activities of activated sludge (AS) for the treatment of landfill leachate (LFL). The chemical oxygen demand (COD) and BOD5/COD ratio of LFL used in this research were 10,500 and 0.68, respectively. In order to survey the role of porous absorbent, perlite was employed as an alternative with low porosity and was compared to powdered activated carbon (PAC), which has been most widely used in the treatment process. As a result, the COD removal efficiency increased from 32% to 47.7% when alkali LFL was loaded to the sequence batch reactors (SBRs) at the optimum conditions of the biological process. Also, at the same condition, both SBRs containing PAC and perlite showed COD removals of over 81% and 72%, respectively. The specific oxygen uptake rate (SOUR) showed that alkali pre-treatment reduces the toxicity effect of heavy metals on microorganism activities. The adsorption capacity (the uptake of COD) was analyzed by Langmuir and Freundlich isotherm models. Further, the kinetic study of COD adsorption during the treatment process demonstrated that the alkali pre-treatment of LFL proceeded faster and was intensified by the presence of adsorbents.


Assuntos
Óxido de Alumínio , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Dióxido de Silício , Hidróxido de Sódio , Bactérias/metabolismo , Poluentes Químicos da Água
6.
Waste Manag Res ; 35(7): 766-775, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28580848

RESUMO

The co-treatment system of photosynthetic microalgae Chlorella vulgaris and adsorption was investigated as a possible combination of symbiotic mixed culture for the simultaneous removal of nutrients (ammonium and phosphate) and organic contaminants. In this study, response surface methodology for experimental design and optimization was used. For experiment operation, two factorial designs containing five chemical oxygen demand influent (CODin) concentrations (100, 200, 400, 600 and 700 mg l-1) and hydraulic retention times (0.63, 1, 1.75, 2.5 and 2.88 d) were applied. The co-treatment system performed successfully in removing both nutrients (nitrogen and phosphate) and COD, showing around 88%, 75% and 48% removal for the maximum level, respectively. The adsorption-photobioreactor (APBR) displayed superior performance of the microalgae growth rate compared to the photobioreactor. Also, the adsorption capacity (the uptake of COD) has been analysed with the first-order equation. The results showed that the experimental data of the APBR fit well with the model.


Assuntos
Compostos de Amônio , Fosfatos , Fotobiorreatores , Adsorção , Chlorella vulgaris
7.
Environ Technol ; 38(19): 2447-2455, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27892814

RESUMO

Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.


Assuntos
Bactérias , Biodegradação Ambiental , Biofilmes , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos , Poluentes Químicos da Água
8.
Water Sci Technol ; 74(12): 2737-2750, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997385

RESUMO

Determination of fouling mechanisms and accurate quantitative prediction of nano-porous membrane behavior are of great interest in membrane processes. This work has focused on a comprehensive comparison of two classical and new fouling models. Different operational conditions were tested to analyze the level of agreement of these models with experimental observation. Whey solutions of 8, 0.8 and 0.5 g/L were ultrafiltered in transmembrane pressures (TMPs) of 300 and 500 KPa through a synthesized polyethersulfone/copolymer blend membrane. Fouling mechanisms and the effect of different combinations of TMPs and protein concentrations were determined and analyzed by fitting the experimental data to different models. Based on the results obtained from classical models, it was found that the predictions of the cake layer formation model were quite acceptable, followed by the intermediate blocking model. The new combined pore blockage-cake filtration model, however, was found to be very successful in predicting the flux decline over time for every operational condition tested, with all relative errors of prediction less than 5%. The latter also showed a good performance in the transition from the pore blockage mechanism to cake layer formation.


Assuntos
Filtração/instrumentação , Membranas Artificiais , Modelos Teóricos , Nanoporos , Soro do Leite , Queijo , Polímeros , Porosidade , Pressão , Soluções , Sulfonas , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Proteínas do Soro do Leite
9.
J Mol Model ; 22(6): 127, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27178416

RESUMO

Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO-LUMO orbital analysis, and UV-vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of -19.90, -19.66, -14.01, -8.70, and -4.76 kJ mol(-1) were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.

10.
Bioresour Technol ; 212: 62-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085147

RESUMO

In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model.


Assuntos
Reatores Biológicos , Etanol/metabolismo , Modelos Teóricos , Saccharomyces cerevisiae/metabolismo , Algoritmos , Dimetilpolisiloxanos , Fermentação , Glucose/química , Cinética , Membranas Artificiais , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
J Mol Model ; 21(10): 273, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26419973

RESUMO

The sensitivity of terpyrrole (TPy; used as a polypyrrole model) to toxic hydrogen cyanide (HCN) adsorption was studied by using DFT to perform geometry optimization and to calculate the adsorption energy of HCN on TPy as well as orbital properties. The interaction of terpyrrole with HCN was studied for different relative orientations of the molecules. The adsorption energy, charge analysis, and the density of states were used to evaluate the ability of TPy to sense HCN in these different relative orientations. The adsorption energy was calculated to be -3.9 and -3.1 kcal mol(-1) for two possible relative orientations. Frontier molecular orbitals and energies indicated that some hybridization occurs during the adsorption of HCN on TPy when the molecules have appropriate relative orientations, resulting in an increase in conductivity. Considering the changes in the HOMO-LUMO energy gap that were calculated to occur during HCN adsorption, it is clear that TPy is sensitive to HCN adsorption, suggesting that TPy has the potential to act as an HCN sensor. Graphical abstract HCN adsorption on TPy.

12.
J Mol Model ; 21(11): 285, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472329

RESUMO

The interaction of methanol with terthiophene (3PT; a model of polythiophene) was investigated using density functional theory (DFT) at the BLYP-D3/6-31+G(d,p) level of theory. The computed density of states (DOS) pointed to considerable orbital hybridization upon the interaction of methanol with 3PT. Natural population analysis (NPA) was used to determine the charge distribution as well as the net charge transfer within the 3PT-methanol system, and thus to assess the sensing ability of terthiophene. The computed dipole moment revealed that the dielectric µ D changes upon the interaction of methanol with 3PT. Using calculated changes in the HOMO-LUMO energy gap, it was deduced that the electronic properties of 3PT are sensitive to the interaction of 3PT with methanol. After full energy relaxation, the interaction energy of methanol with 3PT in the most stable configuration was calculated to be -16.4 (counterpoise-corrected energy: -13.5) kJ mol(-1), providing proof that methanol is physisorbed by 3PT. Graphical Abstract Adsorption of methanol on polythiophene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...