Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(10): e2209321, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504252

RESUMO

The development of flexible strain sensors over the past decade has focused on accessing high strain percentages and high sensitivity (i.e., gauge factors). Strain sensors that employ capacitance as the electrical signal to correlate to strain are typically restricted in sensitivity because of the Poisson effect. By employing auxetic structures, the limits of sensitivity for capacitive sensors have been exceeded, which has improved the competitiveness of this modality of sensing. In this work, the first employment of helical auxetic yarns as capacitive sensors is presented. It is found that the response of the helical auxetic yarn capacitive sensors (termed as HACS) is dependent on the two main fabrication variables-the ratio of diameters and the helical wrapping length. Depending on these variables, sensors that respond to strain with increasing or decreasing capacitance values can be obtained. A greater auxetic character results in larger sensitivities accessible at smaller strains-a characteristic that is not commonly found when accessing high gauge factors. In addition, the highest sensitivity for auxetic capacitive sensors reported thus far is obtained. A mechanism of sensor response that explains both the variable capacitance response and the high gauge factors obtained experimentally is proposed.

2.
Langmuir ; 38(30): 9239-9246, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35867994

RESUMO

The objectives of this work were to develop and extend the previously proposed approaches to control the structure of nanoscale planar systems based on modular fluorophore compounds capable of efficient analyte binding and to optimize the architecture of ultrathin films formed from them to create a thin-film sensor element for mercury cations. The possibility of applying the ratiometric approach to the fluorescence measurements to obtain a quantitative analytical signal was shown. It was found that films with the Langmuir-Schaefer film architecture, in which the receptor crown ether groups of the fluoroionophore are oriented toward the studied solution, allow the quantitative determination of mercury cations in water at concentrations below the threshold limit value and are especially effective in the analyte concentration range of 10-10-10-5 M. High selectivity of the obtained thin-film sensitive elements with respect to mercury cations and the possibility of regeneration of such elements after quantitative determination of mercury cations in aqueous solutions are demonstrated.

3.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216456

RESUMO

Sulfur-containing groups preorganized on macrocyclic scaffolds are well suited for liquid-phase complexation of soft metal ions; however, their binding potential was not extensively studied at the air-water interface, and the effect of thioether topology on metal ion binding mechanisms under various conditions was not considered. Herein, we report the interface receptor characteristics of topologically varied thiacalixarene thioethers (linear bis-(methylthio)ethoxy derivative L2, O2S2-thiacrown-ether L3, and O2S2-bridged thiacalixtube L4). The study was conducted in bulk liquid phase and Langmuir monolayers. For all compounds, the highest liquid-phase extraction selectivity was revealed for Ag+ and Hg2+ ions vs. other soft metal ions. In thioether L2 and thiacalixtube L4, metal ion binding was evidenced by a blue shift of the band at 303 nm (for Ag+ species) and the appearance of ligand-to-metal charge transfer bands at 330-340 nm (for Hg2+ species). Theoretical calculations for thioether L2 and its Ag and Hg complexes are consistent with experimental data of UV/Vis, nuclear magnetic resonance (NMR) spectroscopy, and single-crystal X-ray diffractometry of Ag-thioether L2 complexes and Hg-thiacalixtube L4 complex for the case of coordination around the metal center involving two alkyl sulfide groups (Hg2+) or sulfur atoms on the lower rim and bridging unit (Ag+). In thiacrown L3, Ag and Hg binding by alkyl sulfide groups was suggested from changes in NMR spectra upon the addition of corresponding salts. In spite of the low ability of the thioethers to form stable Langmuir monolayers on deionized water, one might argue that the monolayers significantly expand in the presence of Hg salts in the water subphase. Hg2+ ion uptake by the Langmuir-Blodgett (LB) films of ligand L3 was proved by X-ray photoelectron spectroscopy (XPS). Together, these results demonstrate the potential of sulfide groups on the calixarene platform as receptor unit towards Hg2+ ions, which could be useful in the development of Hg2+-selective water purification systems or thin-film sensor devices.


Assuntos
Espaços Confinados , Mercúrio , Ligantes , Mercúrio/química , Metais/química , Sais , Sulfetos/química , Enxofre , Água/química
4.
Adv Sci (Weinh) ; 9(11): e2106008, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187859

RESUMO

Flexible triboelectric nanogenerators (TENGs) have attracted increasing interest since their advent in 2012. In comparison with other flexible electrodes, hydrogels possess transparency, stretchability, biocompatibility, and tunable ionic conductivity, which together provide great potential as current collectors in TENGs for wearable applications. The development of hydrogel-based TENGs (H-TENGs) is currently a burgeoning field but research efforts have lagged behind those of other common flexible TENGs. In order to spur research and development of this important area, a comprehensive review that summarizes recent advances and challenges of H-TENGs will be very useful to researchers and engineers in this emerging field. Herein, the advantages and types of hydrogels as soft ionic conductors in TENGs are presented, followed by detailed descriptions of the advanced functions, enhanced output performance, as well as flexible and wearable applications of H-TENGs. Finally, the challenges and prospects of H-TENGs are discussed.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Eletrodos , Íons
5.
Small ; 18(2): e2104306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655166

RESUMO

Achievement of information storage at molecular level remains a pressing task in miniaturization of computing technology. One of the promising approaches for its practical realization is development of nanoscale molecular switching materials including redox-active systems. The present work demonstrates a concept of expansion of a number of available redox-states of self-assembled monolayers through supramolecular approach. For this, the authors synthesized an octopus-like heteroleptic terbium(III) bisphthalocyaninate bearing one ligand with eight thioacetate-terminated "tentacles" (octopus-Pc) and a ligand with four crown-ether moieties (H2 [(15C5)4 Pc]). It is shown that octopus-Pc forms stable monolayers on gold, where its face-on orientation allows for subsequent binding of crown-phthalocyanine molecules via potassium ion bridges. This chemistry is utilized to form a heterogeneous bilayer, in which a single molecule thick adlayer brings an additional redox-state to the system, thus expanding the multistability of the system as a whole. All four redox states available to this system exhibit characteristic absorbance in visible range, allowing for the switching to be easily read out using optical density measurements. The proposed approach can be used in wide range of switchable materials-single-molecule magnets, conductive, and optical devices, etc.


Assuntos
Éteres de Coroa , Octopodiformes , Animais , Éteres de Coroa/química , Íons , Ligantes , Oxirredução
6.
J Am Chem Soc ; 143(35): 14053-14058, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34423977

RESUMO

Reversible nucleophilic addition to a phthalocyanine core was observed for the first time for the electron-deficient cationic phosphorus(V) complex [PcP(OMe)2]+, whose reaction with KOH afforded a highly distorted nonaromatic adduct bearing an OH group at one of the α-pyrrolic carbon atoms. This adduct was characterized by single-crystal X-ray diffraction, ESI HRMS, and NMR, and UV-vis spectroscopy, together with quantum-chemical modeling. The acidic treatment of this adduct restored aromaticity and recovered the starting cationic complex. The reversible aromaticity breakage resulted in dramatic changes in the photophysical properties of the studied complex, which could pave the way to novel switchable Pc-based compounds and materials.

7.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299430

RESUMO

Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)2, bearing two axial pyrazine ligands. The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordination upon lateral compression of the system, which helps bring the two macrocycles closer together and forces the formation of Ni-pyz bonds. The fact of Ni(II) porphyrinate switching from low- to high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of Ni-pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.

8.
Ecol Evol ; 11(2): 1037-1056, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520185

RESUMO

The reliability of evolutionary reconstructions based on the fossil record critically depends on our knowledge of the factors affecting the fossilization of soft-bodied organisms. Despite considerable research effort, these factors are still poorly understood. In order to elucidate the main prerequisites for the preservation of soft-bodied organisms, we conducted long-term (1-5 years) taphonomic experiments with the model crustacean Artemia salina buried in five different sediments. The subsequent analysis of the carcasses and sediments revealed that, in our experimental settings, better preservation was associated with the fast deposition of aluminum and silicon on organic tissues. Other elements such as calcium, magnesium, and iron, which can also accumulate quickly on the carcasses, appear to be much less efficient in preventing decay. Next, we asked if the carcasses of uni- and multicellular organisms differ in their ability to accumulate aluminum ions on their surface. The experiments with the flagellate Euglena gracilis and the sponge Spongilla lacustris showed that aluminum ions are more readily deposited onto a multicellular body. This was further confirmed by the experiments with uni- and multicellular stages of the social ameba Dictyostelium discoideum. The results lead us to speculate that the evolution of cell adhesion molecules, which provide efficient cell-cell and cell-substrate binding, probably can explain the rich fossil record of soft-bodied animals, the comparatively poor fossil record of nonskeletal unicellular eukaryotes, and the explosive emergence of the Cambrian diversity of soft-bodied fossils.

9.
Soft Matter ; 16(43): 9857-9863, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048105

RESUMO

Designing sensors for toxic compounds such as mercury salts in aqueous solutions still remains one of the most pressing tasks of modern chemical research, since many existing systems do not show enough sensitivity and/or response. In this regard, the opportunities offered by supramolecular approaches can be used to improve both these characteristics by creating a new self-organized smart system. Herein, we show that barium cations, that according to the data of X-ray standing waves do not bind directly to the ionophore molecules in the monolayers at the air/water interface, could be used to efficiently preorganize such molecules to achieve supramolecular architecture. We demonstrate that such preorganization ensures both low analyte detection threshold and high fluorescent response. We reveal the interrelation of the monolayer structure and receptor characteristics of a sensory system and show that such cation-induced preorganization in Langmuir monolayers of a hemicyanine dithia-aza-crown-substituted chromoionophore inhibits the formation of non-fluorescent aggregates with low receptor function, and allows the quantitative detection of mercury cations using a ratiometric fluorometric approach.

10.
Langmuir ; 36(6): 1423-1429, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31986882

RESUMO

Redox isomerism, that is, the change of a metal cation valence state in organic complexes, can find promising applications in multistable molecular switches for various molecular electronic devices. However, despite a large number of studies devoted to such processes in organic complexes of multivalent lanthanides, redox-isomeric transformations were never observed for europium. In the present work, we demonstrate the unique case of redox isomerization of Eu(III)/Eu(II) complexes on the example of Eu double-decker octa-n-butoxyphthalocyaninate (Eu[(BuO)8Pc]2) under ambient conditions (air and room temperature). It is shown that assumption of the face-on orientation on the aqueous subphase surface, in which two of each phthalocyanine decks in Eu[(BuO)8Pc]2 are located in different media (air and water), leads to the intramolecular electron transfer that results in the formation of a divalent Eu(II) cation in the complex. Lateral compression of the thus-formed monolayer results in the reorientation of bisphthalocyaninate to the edge-on state, in which the ligands can be considered identical, and occurrence of the reverse redox-isomeric transformation into the complex with a trivalent Eu cation. Both redox-isomeric states were directly observed by X-ray absorption near-edge structure spectroscopy in ultrathin films formed under different conditions.

11.
J Chem Phys ; 150(13): 134301, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954040

RESUMO

Macrocyclic tetrapyrrolic compounds, such as naturally occurring or artificial porphyrins and phthalocyanines, have unique and highly attractive properties for applications in medicine and technology. The interaction of free-base phthalocyanine (H2Pc) and tetraphenylporphyrin (H2TPP) molecules with low-energy (0-15 eV) electrons was studied in vacuo by means of negative ion resonant electron capture mass spectrometry. Close similarities in formation and decay of negative ions of these compounds were revealed. Efficient formation of long-lived molecular negative ions (MNIs) was observed in the incident electron energy range of 0-8 eV, unprecedentedly wide for organic compounds and comparable to the range characteristic to carbon atomic clusters, fullerenes. Experiments testify to the strong persistence of MNIs of both compounds to dissociative decay, isomerization, and electron autodetachment. Lifetimes of MNIs as a function of incident electron energy were measured and it was concluded that the isolated anions may retain additional electrons in a time scale of up to hundreds of seconds at standard temperature due to the high adiabatic electron affinity of these large molecules. For the representatives of dyes and photochromic compounds comprehensively studied in terms of interaction with light, the present work highlights yet another unique property of these molecules, namely the capability to attach and durably retain an additional electron of low, pre-ionization energy.


Assuntos
Indóis/química , Porfirinas/química , Teoria Quântica , Elétrons , Isoindóis , Modelos Moleculares , Conformação Molecular , Temperatura
12.
Analyst ; 141(6): 1912-7, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26890271

RESUMO

Reusable surface plasmon resonance chips allowing the quantitative and selective detection of mercury(ii) ions in water at the 0.01 nM level are reported. The surface-modified gold sensor consists of a rarefied self-assembled monolayer of octanethiol topped with a Langmuir-Blodgett monolayer of an amphiphilic and highly-specific chelator. The interdigitated architecture confers to the bilayer a high packing density, surface coverage, and binding-group accessibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...