Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 11(6): 298, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34194891

RESUMO

Seed raffinose family oligosaccharides (RFOs) are converted into sucrose and galactose by α-galactosidase during germination. Seed osmopriming with a low concentration of potassium nitrate (KNO3) induces early and synchronized germination by activating hydrolases. Here, we report the effect of osmopriming on the germination indices of chickpea, its effects on α-galactosidase, and the fate of total RFOs. Chickpea seeds primed with 100 µM KNO3 show early and synchronized germination but with reduced vigour after 48 h after imbibition (HAI) due to excess sucrose accumulation. The KNO3 suppressed the activity of α-galactosidase during the imbibition stage that was later derepressed after 24 HAI, hence decreased the RFO levels accumulating high levels of sucrose after 48 HAI. The accumulated sucrose imposed a negative effect on the germination characteristics, particularly on seed vigour. Our results suggested that the sugar release and utilization were highly regulated and crucial during imbibition and germination; the enzyme α-galactosidase regulates sugar release from seed RFO reserve.

2.
Plant Signal Behav ; 15(8): 1709707, 2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906799

RESUMO

Alpha-galactosides or Raffinose Family Oligosaccharides (RFOs) are enriched in legumes and are considered as anti-nutritional factors responsible for inducing flatulence. Due to a lack of alpha-galactosidases in the stomachs of humans and other monogastric animals, these RFOs are not metabolized and are passed to the intestines to be processed by gut bacteria leading to distressing flatulence. In plants, alpha(α)-galactosides are involved in desiccation tolerance during seed maturation and act as a source of stored energy utilized by germinating seeds. The hydrolytic enzyme alpha-galactosidase (α-GAL) can break down RFOs into sucrose and galactose releasing the monosaccharide α-galactose back into the system. Through characterization of RFOs, sucrose, reducing sugars, and α-GAL activity in maturing and germinating chickpeas, we show that stored RFOs are likely required to maintain a steady-state level of reducing sugars. These reducing sugars can then be readily converted to generate energy required for the high energy-demanding germination process. Our observations indicate that RFO levels are lowest in imbibed seeds and rapidly increase post-imbibition. Both RFOs and the α-GAL activity are possibly required to maintain a steady-state level of the reducing monosaccharide sugars, starting from dry seeds all the way through post-germination, to provide the energy for increased germination vigor.


Assuntos
Cicer/enzimologia , Cicer/metabolismo , Oligossacarídeos/metabolismo , Rafinose/metabolismo , Sementes/metabolismo , alfa-Galactosidase/metabolismo , Germinação/fisiologia , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...