Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(10): 5206-20, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26740627

RESUMO

Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.


Assuntos
Colesterol/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteólise , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina
2.
J Cell Sci ; 127(Pt 8): 1765-78, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522181

RESUMO

The inner and outer layers of COPII mediate cargo sorting and vesicle biogenesis. Sec16A and p125A (officially known as SEC23IP) proteins interact with both layers to control coat activity, yet the steps directing functional assembly at ER exit sites (ERES) remain undefined. By using temperature blocks, we find that Sec16A is spatially segregated from p125A-COPII-coated ERES prior to ER exit at a step that required p125A. p125A used lipid signals to control ERES assembly. Within p125A, we defined a C-terminal DDHD domain found in phospholipases and PI transfer proteins that recognized PA and phosphatidylinositol phosphates in vitro and was targeted to PI4P-rich membranes in cells. A conserved central SAM domain promoted self-assembly and selective lipid recognition by the DDHD domain. A basic cluster and a hydrophobic interface in the DDHD and SAM domains, respectively, were required for p125A-mediated functional ERES assembly. Lipid recognition by the SAM-DDHD module was used to stabilize membrane association and regulate the spatial segregation of COPII from Sec16A, nucleating the coat at ERES for ER exit.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Proteínas de Transporte/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Ligação a RNA , Proteínas de Transporte Vesicular/metabolismo
4.
Am J Physiol Renal Physiol ; 288(4): F763-70, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15572519

RESUMO

ANG II activation of phospholipase D (PLD) is required for ERK and NAD(P)H oxidase activation, both of which are involved in hypertension. Previous findings demonstrate that ANG II stimulates PLD activity through AT(1) receptors in a RhoA-dependent mechanism. Additionally, endogenous AT(2) receptors in preglomerular smooth muscle cells attenuate ANG II-mediated PLD activity. In the present study, we examined the signal transduction mechanisms used by endogenous AT(2) receptors to modulate ANG II-induced PLD activity through either PLA(2) generation of lysophosphatidylethanolamine or Galpha(i)-mediated generation of nitric oxide (NO) and interaction with RhoA. Blockade of AT(2) receptors, Galpha(i) and NO synthase, but not PLA(2), enhanced ANG II-mediated PLD activity in cells rich in, but not poor in, AT(2) receptors. Moreover, NO donors, a direct activator of guanylyl cyclase and a cGMP analog, but not lysophosphatidylethanolamine, inhibited ANG II-mediated PLD activity, whereas an inhibitor of guanylyl cyclase augmented ANG II-induced PLD activity. AT(2) receptor- and NO-mediated attenuation of ANG II-induced PLD activity was completely lost in cells transfected with S188A RhoA, which cannot be phosphorylated on serine 188. Therefore, our data indicate that AT(2) receptors activate Galpha(i), subsequently stimulating NO synthase and leading to increased soluble guanylyl cyclase activity, generation of cGMP, and activation of a protein kinase, resulting in phosphorylation of RhoA on serine 188. Furthermore, because AT(2) receptors inhibit AT(1) receptor signaling to PLD via modulating RhoA activity, AT(2) receptor signaling can potentially regulate multiple vasoconstrictive signaling systems through inactivating RhoA.


Assuntos
Hipertensão Renal/metabolismo , Óxido Nítrico/metabolismo , Fosfolipase D/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Clonagem Molecular , GMP Cíclico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/genética
5.
BMC Cell Biol ; 4: 13, 2003 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-12969509

RESUMO

BACKGROUND: Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. RESULTS: Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: DeltaCC-ARNO and CC-ARNO were partially translocated to the membranes while DeltaPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. CONCLUSIONS: Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/farmacologia , Fosfolipase D/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Immunoblotting , Microscopia Confocal , Mutação , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
6.
EMBO J ; 22(16): 4059-69, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912905

RESUMO

The small GTPase Sar1p controls the assembly of the cytosolic COPII coat that mediates export from the endoplasmic reticulum (ER). Here we demonstrate that phospholipase D (PLD) activation is required to support COPII-mediated ER export. PLD activity by itself does not lead to the recruitment of COPII to the membranes or ER export. However, PLD activity is required to support Sar1p-dependent membrane tubulation, the subsequent Sar1p-dependent recruitment of Sec23/24 and Sec13/31 COPII complexes to ER export sites and ER export. Sar1p recruitment to the membrane is PLD independent, yet activation of Sar1p is required to stimulate PLD activity on ER membranes, thus PLD is temporally regulated to support ER export. Regulated modification of membrane lipid composition is required to support the cooperative interactions that enable selective transport, as we demonstrate here for the mammalian COPII coat.


Assuntos
Transporte Biológico/efeitos dos fármacos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfolipase D/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , 1-Butanol/farmacologia , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Fibroblastos/enzimologia , Fibroblastos/virologia , Regulação Enzimológica da Expressão Gênica , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Fosfoproteínas/metabolismo , Ratos , Proteínas de Transporte Vesicular , Vírus da Estomatite Vesicular Indiana/metabolismo
7.
FEBS Lett ; 531(1): 65-8, 2002 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-12401205

RESUMO

Phosphatidic acid (PA) is an important second messenger produced by the activation of numerous cell surface receptors. Recent data have suggested that PA regulates multiple cellular processes. This review addresses primarily the role of PA in the regulation of the Erk1/2 cascade pathway. A model for the regulation of Erk1/2 phosphorylation by cell surface receptors is presented. According to this model, agonists stimulate the binding of GTP to Ras and the activation of phospholipase D to generate phosphatidic acid. PA promotes the binding of cRaf-1 kinase to the membrane, where it interacts with Ras.GTP and other regulatory components of the pathway. Ras-Raf complexes remain bound to the surface of endosomes, where scaffolding complexes involving Ras, cRaf-1, MEK and Erk are formed. Complete activation and coupling of the cascade requires endocytosis, a process that is also modulated by PA.


Assuntos
Regulação Enzimológica da Expressão Gênica , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Fosfatídicos/fisiologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Endocitose , Ativação Enzimática , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...