Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132109

RESUMO

Lactic acid bacteria (LAB), a probiotic, provide various health benefits. We recently isolated a new Lactobacillus paracasei strain with strong anti-inflammatory effects under lipopolysaccharide-induced conditions and proposed a new mode of action-augmenting the endoplasmic reticulum stress pathway for anti-inflammatory functions in host cells. The beneficial effects of the L. paracasei strains on the skin have been described; however, the effects of L. paracasei-derived extracellular vesicles (LpEVs) on the skin are poorly understood. Herein, we investigated whether LpEVs can improve inflammation-mediated skin phenotypes by determining their effects on primary human skin cells and a three-dimensional (3D) full-thickness human skin equivalent under tumor necrosis factor (TNF)-α-challenged inflammatory conditions. LpEVs were efficiently taken up by the human skin cells and were much less cytotoxic to host cells than bacterial lysates. Furthermore, low LpEV concentrations efficiently restored TNF-α-induced cellular phenotypes, resulting in increased cell proliferation and collagen synthesis, but decreased inflammatory factor levels (matrix metalloproteinase 1, interleukin 6, and interleukin 8) in the human dermal fibroblasts, which was comparable to that of retinoic acid, a representative antiaging compound. The beneficial effects of LpEVs were validated in a 3D full-thickness human skin equivalent model. LpEV treatment remarkably restored the TNF-α-induced epidermal malformation, abnormal proliferation of keratinocytes in the basal layer, and reduction in dermal collagen synthesis. Additionally, LpEVs penetrated and reached the deepest dermal layer within 24 h when overlaid on top of a 3D full-thickness human skin equivalent. Furthermore, they possessed superior antioxidant capacity compared with the human cell-derived EVs. Taken together, the anti-inflammatory probiotic LpEVs can be attractive antiaging and antioxidant substances for improving inflammation-induced skin phenotypes and disorders.


Assuntos
Vesículas Extracelulares , Lacticaseibacillus paracasei , Probióticos , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes , Probióticos/farmacologia , Inflamação , Fenótipo , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Colágeno
2.
Pharmaceutics ; 14(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35745784

RESUMO

Recently, various types of in vitro-reconstructed 3D skin models have been developed for drug testing and disease modeling. Herein, we structurally and functionally validated a self-assembled reconstructed skin equivalent (RSE) and developed an IL-17a-induced in vitro psoriasis-like model using a self-assembled RSE. The tissue engineering approach was used to construct the self-assembled RSE. The dermal layer was generated using fibroblasts secreting their own ECM, and the epidermal layer was reconstructed by seeding keratinocytes on the dermal layer. To generate the psoriatic model, IL-17A was added to the culture medium during the air-liquid interface culture period. Self-assembled RSE resulted in a fully differentiated epidermal layer, a well-established basement membrane, and dermal collagen deposition. In addition, self-assembled RSE was tested for 20 reference chemicals according to the Performance Standard of OECD TG439 and showed overall sensitivity, specificity, and accuracy of 100%, 90%, and 95%, respectively. The IL-17a-treated psoriatic RSE model exhibited psoriatic epidermal characteristics, such as epidermal hyperproliferation, parakeratosis, and increased expression of KRT6, KRT17, hBD2, and S100A9. Thus, our results suggest that a self-assembled RSE that structurally and functionally mimics the human skin has a great potential for testing various drugs or cosmetic ingredients and modeling inflammatory skin diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...