Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049065

RESUMO

Magnetic anisotropy strongly influences the performance of the magnetocaloric effect. We investigated the magnetocaloric properties of the NdAlGe single crystal with I41md structure. The temperature-dependent magnetization revealed significant anisotropic properties; stable antiferromagnetic transition at TN = 6 K for H//a and meta-magnetic spin reorientation at low temperature (T ≤ 5 K) within an intermediate field (H = 2 T) for H//c. During the metamagnetic spin reorientation, the abrupt change of the magnetic entropy leads to a significant magnetocaloric effect with negative magnetic entropy change (∆SM) by -13.80 J kg-1 K-1 at TC = 5.5 K for H = 5 T along the H//c axis. In addition, the antiferromagnetic state for H//a shows the inverse magnetocaloric effect(I-MCE) by positive entropy change ∆SM = 2.64 J kg-1 K-1 at TN = 6 K for H = 5 T. This giant MCE accompanied by the metamagnetic transition resulted in a significantly large relative cooling power (158 J/kg at H = 5 T) for H//c. The giant MCE and I-MCE can be applied to the rotational magnetocaloric effect (R-MCE) depending on the crystal orientations. NdAlGe exhibits rotational entropy change ∆Sc-a = -12.85 J kg-1 K at Tpeak = 7.5 K, H = 5 T. With comparison to conventional MCE materials, NdAlGe is suggested as promising candidate of R-MCE, which is a novel type of magnetic refrigeration system.

2.
ACS Appl Mater Interfaces ; 12(32): 36589-36599, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667768

RESUMO

One promising approach to improving thermoelectric energy conversion is to use nanostructured interfaces that enhance Seebeck coefficient while reducing thermal conductivity. Here, we synthesized Au-Cu2Se core-shell nanoparticles with different shell thicknesses by controlling the precursor concentration in solution. The Au-Cu2Se core-shell nanoparticles are about 37-53 nm in size, and the cores of the nanostructures are composed of Au nanoparticles with sizes of ∼11 nm. The effect of shell thickness on the thermoelectric properties of core-shell nanocomposites is investigated after sintering the core-shell nanoparticles into pellets using the spark plasma sintering (SPS) technique. The power factor was optimized by the synergetic effect of the improvement of Seebeck coefficient by energy filtering in the Au/Cu2Se interface and the effective tuning of carrier concentration by Ohmic contact in the interface. The lattice thermal conductivity of core-shell nanocomposites is reduced by coherent phonon scattering, which is caused by the wavelike interference of phonons due to the phase shift in the core-shell interface. The highest ZT value of 0.61 is obtained at 723 K for Au-Cu2Se core-shell nanocomposite with a shell thickness of 21 nm, which is higher than that of pure Cu2Se nanocomposite or a mixture of Au and Cu2Se particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...