Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114288, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814782

RESUMO

Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.


Assuntos
Diabetes Mellitus Experimental , Inflamação , Receptores Acoplados a Proteínas G , Pele , Cicatrização , Animais , Receptores Acoplados a Proteínas G/metabolismo , Pele/patologia , Pele/metabolismo , Pele/lesões , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Cicatrização/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais , Ácidos Decanoicos/farmacologia , Lipólise/efeitos dos fármacos , Humanos , Adipócitos/metabolismo , Células Mieloides/metabolismo
2.
Biomedicines ; 9(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944568

RESUMO

Diabetic wound healing is associated with impaired function and reduced numbers of myofibroblasts, a heterogeneous cell population with varying capacities to promote repair. To determine how diabetes alters myofibroblast composition, we performed flow cytometry and spatial tissue analysis of myofibroblast subsets throughout the healing process in diabetic (db/db) and control (db/+) mouse skin. We observed reduced numbers of profibrotic SCA1+; CD34+; CD26+ myofibroblasts in diabetic wounds five days after injury, with decreased expression of fibrosis-associated genes compared to myofibroblasts from db/+ mouse wounds. While the abundance of myofibroblasts remained reduced in db/db mouse wounds compared to controls, the altered myofibroblast heterogeneity and gene expression in diabetic mice was improved seven days after injury. The natural correction of myofibroblast composition and gene expression in db/db wound beds temporally corresponds with a macrophage phenotypic switch. Correlation analysis from individual wound beds revealed that wound healing in control mice is associated with CD206+ macrophages, while the rescued myofibroblast phenotypes in diabetic wounds are correlated with increased CD301b+ macrophage numbers. These data demonstrate how diabetes impacts specific subsets of myofibroblasts and indicate that signaling capable of rescuing impaired diabetic wound healing could be different from signals that regulate wound healing under nonpathological conditions.

3.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669239

RESUMO

Irregular inflammatory responses are a major contributor to tissue dysfunction and inefficient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subsequent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this review, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair.


Assuntos
Adipócitos Brancos/imunologia , Derme/citologia , Derme/lesões , Fibroblastos/imunologia , Cicatrização/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comunicação Celular/imunologia , Polaridade Celular/imunologia , Citocinas/metabolismo , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/imunologia
4.
Cell Stem Cell ; 26(6): 880-895.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302523

RESUMO

Mature adipocytes store fatty acids and are a common component of tissue stroma. Adipocyte function in regulating bone marrow, skin, muscle, and mammary gland biology is emerging, but the role of adipocyte-derived lipids in tissue homeostasis and repair is poorly understood. Here, we identify an essential role for adipocyte lipolysis in regulating inflammation and repair after injury in skin. Genetic mouse studies revealed that dermal adipocytes are necessary to initiate inflammation after injury and promote subsequent repair. We find through histological, ultrastructural, lipidomic, and genetic experiments in mice that adipocytes adjacent to skin injury initiate lipid release necessary for macrophage inflammation. Tamoxifen-inducible genetic lineage tracing of mature adipocytes and single-cell RNA sequencing revealed that dermal adipocytes alter their fate and generate ECM-producing myofibroblasts within wounds. Thus, adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Assuntos
Lipólise , Miofibroblastos , Adipócitos , Animais , Macrófagos , Camundongos , Pele
5.
Science ; 362(6417)2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467144

RESUMO

During tissue repair, myofibroblasts produce extracellular matrix (ECM) molecules for tissue resilience and strength. Altered ECM deposition can lead to tissue dysfunction and disease. Identification of distinct myofibroblast subsets is necessary to develop treatments for these disorders. We analyzed profibrotic cells during mouse skin wound healing, fibrosis, and aging and identified distinct subpopulations of myofibroblasts, including adipocyte precursors (APs). Multiple mouse models and transplantation assays demonstrate that proliferation of APs but not other myofibroblasts is activated by CD301b-expressing macrophages through insulin-like growth factor 1 and platelet-derived growth factor C. With age, wound bed APs and differential gene expression between myofibroblast subsets are reduced. Our findings identify multiple fibrotic cell populations and suggest that the environment dictates functional myofibroblast heterogeneity, which is driven by fibroblast-immune interactions after wounding.


Assuntos
Macrófagos/fisiologia , Miofibroblastos/fisiologia , Reepitelização/fisiologia , Pele/lesões , Cicatrização/fisiologia , Adipócitos/fisiologia , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Fibrose , Integrina beta1/genética , Queloide/patologia , Lectinas Tipo C/análise , Lectinas Tipo C/metabolismo , Linfocinas/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/metabolismo , Reepitelização/genética , Pele/imunologia , Pele/patologia , Envelhecimento da Pele/fisiologia , Transcriptoma , Cicatrização/genética
6.
Nat Commun ; 9(1): 3592, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181538

RESUMO

Adipocytes undergo pronounced changes in size and behavior to support diverse tissue functions, but the mechanisms that control these changes are not well understood. Mammary gland-associated white adipose tissue (mgWAT) regresses in support of milk fat production during lactation and expands during the subsequent involution of milk-producing epithelial cells, providing one of the most marked physiological examples of adipose growth. We examined cellular mechanisms and functional implications of adipocyte and lipid dynamics in the mouse mammary gland (MG). Using in vivo analysis of adipocyte precursors and genetic tracing of mature adipocytes, we find mature adipocyte hypertrophy to be a primary mechanism of mgWAT expansion during involution. Lipid tracking and lipidomics demonstrate that adipocytes fill with epithelial-derived milk lipid. Furthermore, ablation of mgWAT during involution reveals an essential role for adipocytes in milk trafficking from, and proper restructuring of, the mammary epithelium. This work advances our understanding of MG remodeling and tissue-specific roles for adipocytes.


Assuntos
Adipócitos/citologia , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Adipócitos/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/fisiologia , Animais , Aleitamento Materno , Tamanho Celular , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Lactação/fisiologia , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
8.
Cell Stem Cell ; 19(6): 738-751, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746098

RESUMO

Tissue growth and maintenance requires stem cell populations that self-renew, proliferate, and differentiate. Maintenance of white adipose tissue (WAT) requires the proliferation and differentiation of adipocyte stem cells (ASCs) to form postmitotic, lipid-filled mature adipocytes. Here we use the dynamic adipogenic program that occurs during hair growth to uncover an unrecognized regulator of ASC self-renewal and proliferation, PDGFA, which activates AKT signaling to drive and maintain the adipogenic program in the skin. Pdgfa expression is reduced in aged ASCs and is required for ASC proliferation and maintenance in the dermis, but not in other WATs. Our molecular and genetic studies uncover PI3K/AKT2 as a direct PDGFA target that is activated in ASCs during WAT hyperplasia and is functionally required for dermal ASC proliferation. Our data therefore reveal active mechanisms that regulate ASC self-renewal in the skin and show that distinct regulatory mechanisms operate in different WAT depots.


Assuntos
Adipócitos/citologia , Adipócitos/enzimologia , Autorrenovação Celular , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Pele/citologia , Células-Tronco/citologia , Adipogenia , Animais , Antígeno CD24/metabolismo , Proliferação de Células , Derme/metabolismo , Perfilação da Expressão Gênica , Hiperplasia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
J Vis Exp ; (99): e52328, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26068121

RESUMO

The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.


Assuntos
Ventrículos Laterais/anatomia & histologia , Fatores Etários , Animais , Modelos Animais de Doenças , Epêndima/anatomia & histologia , Epêndima/citologia , Epêndima/patologia , Células Epiteliais/citologia , Células Epiteliais/patologia , Gliose/patologia , Humanos , Hidrocefalia/patologia , Imageamento Tridimensional/métodos , Ventrículos Laterais/citologia , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética , Camundongos , Modelos Anatômicos , Neuroglia/citologia , Neuroglia/patologia
10.
Adipocyte ; 3(3): 206-11, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25068087

RESUMO

The study of adipose tissue in vivo has been significantly advanced through the use of genetic mouse models. While the aP2-Cre(BI) and aP2-Cre(Salk) lines have been widely used to target adipose tissue, the specificity of these lines for adipocytes has recently been questioned. Here we characterize Cre recombinase activity in multiple cell populations of the major adipose tissue depots of these and other Cre lines using the membrane-Tomato/membrane-GFP (mT/mG) dual fluorescent reporter. We find that the aP2-Cre(BI) and aP2-Cre(Salk) lines lack specificity for adipocytes within adipose tissue, and that the aP2-Cre(BI) line does not efficiently target adipocytes in white adipose depots. Alternatively, the Adiponectin-CreERT line shows high efficiency and specificity for adipocytes, while the PdgfRα-CreERUCL and PdgfRα-CreERJHU lines do not efficiently target adipocyte precursor cells in the major adipose depots. Instead, we show that the PdgfRα-Cre line is preferable for studies targeting adipocyte precursor cells in vivo.

11.
Aging Cell ; 13(2): 340-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24341850

RESUMO

Age-associated ventriculomegaly is typically attributed to neurodegeneration; however, additional factors might initiate or contribute to progressive ventricular expansion. By directly linking postmortem human MRI sequences with histological features of periventricular tissue, we show that substantial lateral ventricle surface gliosis is associated with ventriculomegaly. To examine whether loss of ependymal cell coverage resulting in ventricle surface glial scarring can lead directly to ventricle enlargement independent of any other injury or degenerative loss, we modeled in mice the glial scarring found along the lateral ventricle surface in aged humans. Neuraminidase, which cleaves glycosidic linkages of apical adherens junction proteins, was administered intracerebroventricularly to denude areas of ependymal cells. Substantial ependymal cell loss resulted in reactive gliosis rather than stem cell-mediated regenerative repair of the ventricle lining, and the gliotic regions showed morphologic and phenotypic characteristics similar to those found in aged humans. Increased levels of aquaporin-4, indicative of edema, observed in regions of periventricular gliosis in human tissue were also replicated in our mouse model. 3D modeling together with volume measurements revealed that mice with ventricle surface scarring developed expanded ventricles, independent of neurodegeneration. Through a comprehensive, comparative analysis of the lateral ventricles and associated periventricular tissue in aged humans and mouse, followed by modeling of surface gliosis in mice, we have demonstrated a direct link between lateral ventricle surface gliosis and ventricle enlargement. These studies highlight the importance of maintaining an intact ependymal cell lining throughout aging.


Assuntos
Envelhecimento/patologia , Ventrículos Cerebrais/anormalidades , Epêndima/patologia , Gliose/complicações , Gliose/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aquaporina 4/metabolismo , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Pessoa de Meia-Idade , Neuraminidase/metabolismo , Tamanho do Órgão , Mudanças Depois da Morte , Células-Tronco/patologia , Regulação para Cima , Adulto Jovem
12.
J Neurosci ; 32(20): 6947-56, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22593063

RESUMO

Through adulthood, the rodent subventricular zone (SVZ) stem cell niche generates new olfactory bulb interneurons. We had previously reported that the number of new neurons produced in the SVZ declines through aging; however, age-related changes attributable specifically to the SVZ neural stem cell (NSC) population have not been fully characterized. Here, we conducted a spatiotemporal evaluation of adult SVZ NSCs. We assessed ventricle-contacting NSCs, which together with ependymal cells form regenerative units (pinwheels) along the lateral wall of the lateral ventricle. Based on their apical GFAP-expressing process, individual NSCs were identified across the ventricle surface using serial reconstruction of the SVZ. We observed an 86% decline in total NSCs/mm² of intact ependyma in 2-year old versus 3-month-old mice, with fewer NSC processes within each aged pinwheel. This resulted in an associated 78% decline in total pinwheel units/mm². Regional analysis along the lateral ventricle surface revealed that the age-dependent decline of NSCs and pinwheels is spatially uniform and ultimately maintains the conserved ratio of olfactory bulb interneuron subtypes generated in young mice. However, the overall neurogenic output of the aged SVZ is reduced. Surprisingly, we found no significant change in the number of actively proliferating NSCs per mm² of ventricle surface. Instead, our data reveal that, although the total NSC number, pinwheel units and NSCs per pinwheel decline with age, the percentage of actively, mitotic NSCs increases, indicating that age-related declines in SVZ-mediated olfactory bulb neurogenesis occur downstream of NSC proliferation.


Assuntos
Envelhecimento/fisiologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Proliferação de Células , Constrição Patológica/fisiopatologia , Interneurônios/fisiologia , Ventrículos Laterais/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia
13.
Aging Dis ; 2(1): 149-163, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22140636

RESUMO

The persistence of an active subventricular zone neural stem cell niche in the adult mammalian forebrain supports its continued role in the production of new neurons and in generating cells to function in repair through adulthood. Unfortunately, with increasing age the niche begins to deteriorate, compromising these functions. The reasons for this decline are not clear. Studies are beginning to define the molecular and physiologic changesin the microenvironment of the aging subventricular zone niche. New revelations from aging studies will allow for a more thorough understanding of what reparative functions are lost in the aged brain, the progression of niche demise and the possibility for therauptic intervention to improve aging brain function.

14.
Aging Dis ; 2(1): 49-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22396866

RESUMO

The persistence of an active subventricular zone neural stem cell niche in the adult mammalian forebrain supports its continued role in the production of new neurons and in generating cells to function in repair through adulthood. Unfortunately, with increasing age the niche begins to deteriorate, compromising these functions. The reasons for this decline are not clear. Studies are beginning to define the molecular and physiologic changes in the microenvironment of the aging subventricular zone niche. New revelations from aging studies will allow for a more thorough understanding of which reparative functions are lost in the aged brain, the progression of niche demise and the possibility for therauptic intervention to improve aging brain function.

15.
J Neurosci ; 28(14): 3804-13, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385338

RESUMO

The subventricular zone (SVZ) of the adult mouse brain is a narrow stem cell niche that lies along the length of the lateral wall of the lateral ventricles. The SVZ supports neurogenesis throughout adulthood; however, with increasing age, the ventral SVZ deteriorates and only the dorsolateral SVZ remains neurogenic. Associated with the elderly dorsolateral SVZ, we reported previously an increased number of astrocytes interposed within the adjacent ependymal lining. Here, we show that astrocytes integrated within the ependyma are dividing, BrdU-labeled astrocytes that share cellular adherens with neighboring ependymal cells. By tracking BrdU-labeled astrocytes over time, we observed that, as they incorporated within the ependyma, they took on antigenic and morphologic characteristics of ependymal cells, suggesting a novel form of SVZ-supported "regenerative" repair in the aging brain. A similar form of SVZ-mediated ependyma repair was also observed in young mice after mild ependymal cell denudation with low dosages of neuraminidase. Together, this work identifies a novel non-neuronal mechanism of regenerative repair by the adult SVZ.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/patologia , Epêndima/lesões , Epêndima/fisiopatologia , Ventrículos Laterais/citologia , Células-Tronco Adultas/ultraestrutura , Fatores Etários , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Encéfalo/anatomia & histologia , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Relação Dose-Resposta a Droga , Epêndima/efeitos dos fármacos , Epêndima/ultraestrutura , Ventrículos Laterais/ultraestrutura , Masculino , Camundongos , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Neuraminidase/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...