Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38415807

RESUMO

Multiparameter flow cytometry is widely used for acute myeloid leukemia minimal residual disease testing (AML MRD) but is time consuming and demands substantial expertise. Machine learning offers potential advancements in accuracy and efficiency, but has yet to be widely adopted for this application. To explore this, we trained single cell XGBoost classifiers from 98 diagnostic AML cell populations and 30 MRD negative samples. Performance was assessed by cross-validation. Predictions were integrated with UMAP as a heatmap parameter for an augmented/interactive AML MRD analysis framework, which was benchmarked against traditional MRD analysis for 25 test cases. The results showed that XGBoost achieved a median AUC of 0.97, effectively distinguishing diverse AML cell populations from normal cells. When integrated with UMAP, the classifiers highlighted MRD populations against the background of normal events. Our pipeline, MAGIC-DR, incorporated classifier predictions and UMAP into flow cytometry standard (FCS) files. This enabled a human-in-the-loop machine learning guided MRD workflow. Validation against conventional analysis for 25 MRD samples showed 100% concordance in myeloid blast detection, with MAGIC-DR also identifying several immature monocytic populations not readily found by conventional analysis. In conclusion, Integrating a supervised classifier with unsupervised dimension reduction offers a robust method for AML MRD analysis that can be seamlessly integrated into conventional workflows. Our approach can support and augment human analysis by highlighting abnormal populations that can be gated on for quantification and further assessment. This has the potential to speed up MRD analysis, and potentially improve detection sensitivity for certain AML immunophenotypes.

3.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546480

RESUMO

Primary atopic disorders are a group of inborn errors of immunity that skew the immune system toward severe allergic disease. Defining the biology underlying these extreme monogenic phenotypes reveals shared mechanisms underlying common polygenic allergic disease and identifies potential drug targets. Germline gain-of-function (GOF) variants in JAK1 are a cause of severe atopy and eosinophilia. Modeling the JAK1GOF (p.A634D) variant in both zebrafish and human induced pluripotent stem cells (iPSCs) revealed enhanced myelopoiesis. RNA-Seq of JAK1GOF human whole blood, iPSCs, and transgenic zebrafish revealed a shared core set of dysregulated genes involved in IL-4, IL-13, and IFN signaling. Immunophenotypic and transcriptomic analysis of patients carrying a JAK1GOF variant revealed marked Th cell skewing. Moreover, long-term ruxolitinib treatment of 2 children carrying the JAK1GOF (p.A634D) variant remarkably improved their growth, eosinophilia, and clinical features of allergic inflammation. This work highlights the role of JAK1 signaling in atopic immune dysregulation and the clinical impact of JAK1/2 inhibition in treating eosinophilic and allergic disease.


Assuntos
Eosinofilia , Hipersensibilidade Imediata , Hipersensibilidade , Células-Tronco Pluripotentes Induzidas , Criança , Animais , Humanos , Mutação com Ganho de Função , Peixe-Zebra , Hipersensibilidade/genética , Inflamação/genética , Eosinofilia/genética , Janus Quinase 1/genética
4.
Cytometry B Clin Cytom ; 102(5): 342-352, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726954

RESUMO

BACKGROUND: Flow cytometry is widely used for B-ALL minimal residual disease (MRD) analysis given its speed, availability, and sensitivity; however, distinguishing B-lymphoblasts from regenerative B-cells is not always straightforward. Radar plots, which project multiple markers onto a single plot, have been applied to other MRD analyses. Here we aimed to develop optimized radar plots for B-ALL MRD analysis. METHODS: We compiled Children's Oncology Group (COG) flow data from 20 MRD-positive and 9 MRD-negative B-ALL cases (enriched for hematogones) to create labeled training and test data sets with equal numbers of B-lymphoblasts, hematogones, and mature B-cells. We used an automated approach to create hundreds of radar plots and ranked them based on the ability of support vector machine (SVM) models to separate blasts from normal B-cells in the training data set. Top-performing radar plots were compared with PCA, t-SNE, and UMAP plots, evaluated with the test data set, and integrated into clinical workflows. RESULTS: SVM area under the ROC curve (AUC) for COG tube 1/2 radar plots improved from 0.949/0.921 to 0.989/0.968 after optimization. Performance was superior to PCA plots and comparable to UMAP, but with better generalizability to new data. When integrated into an MRD workflow, optimized radar plots distinguished B-lymphoblasts from other CD19-positive populations. MRD quantified by radar plots and serial gating were strongly correlated. DISCUSSION: Radar plots were successfully optimized to discriminate between diverse B-lymphoblast populations and non-malignant CD19-positive populations in B-ALL MRD analysis. Our novel radar plot optimization strategy could be adapted to other MRD panels and clinical scenarios.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Criança , Citometria de Fluxo , Humanos , Aprendizado de Máquina , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Radar
6.
Vox Sang ; 117(2): 251-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34309031

RESUMO

BACKGROUND AND OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic raised concerns about the vulnerability of platelet supply and the uncertain impact of the resumption of elective surgery on utilization. We report the impact of COVID-19 on platelet supply and utilization across a large, integrated healthcare system in the Canadian province of British Columbia (BC). MATERIALS AND METHODS: Historical platelet use in BC by indication was compiled for fiscal year 2010/2011-2019/2020. Platelet collections, initial daily inventory and disposition data were assessed pre-COVID-19 (1 April 2018-15 March 2020) and for two COVID-19 time periods in BC: a shutdown phase with elective surgeries halted (16 March-17 May, 2020) and a renewal phase when elective surgeries resumed (18 May-27 September 2020); comparisons were made provincially and for individual health authorities. RESULTS: Historically, elective surgeries accounted for 10% of platelets transfused in BC. Initial daily supplier inventory increased from baseline during both COVID-19 periods (93/90 units vs. 75 units pre-COVID-19). During the shutdown phase, platelet utilization decreased 10.4% (41 units/week; p < 0.0001), and remained significantly decreased during the ensuing renewal period. Decreased platelet utilization was attributed to fewer transfusions during the shutdown phase followed by a decreased discard/expiry rate during the renewal phase compared to pre-COVID-19 (15.2% vs. 18.9% pre-COVID-19; p < 0.0001). Differences in COVID-19 platelet utilization patterns were noted between health authorities. CONCLUSION: Decreased platelet utilization was observed in BC compared to pre-COVID-19, likely due to a transient reduction in elective surgery as well as practice and policy changes triggered by pandemic concerns.


Assuntos
COVID-19 , Plaquetas , Colúmbia Britânica , Procedimentos Cirúrgicos Eletivos , Humanos , SARS-CoV-2
10.
Int J Pharm ; 591: 119989, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122113

RESUMO

Small interfering RNA (siRNA) therapy has significant potential for the treatment of myriad diseases, including cancer. While intravenous routes of delivery have been found to be effective for efficient targeting to the liver, achieving high accumulations selectively in other organs, including lung tissues, can be a challenge. We demonstrate the rational design and engineering of a layer-by-layer (LbL) nanoparticle-containing aerosol that is able to achieve efficient, multistage delivery of siRNA in vitro. For the purpose, LbL nanoparticles were, for the first time, encapsulated in composite porous micro scale particles using a supercritical CO2-assisted spray drying (SASD) apparatus using chitosan as an excipient. Such particles exhibited aerodynamic properties highly favorable for pulmonary administration, and effective silencing of mutant KRAS in lung cancer cells derived from tumors of a non-small cell lung cancer (NSCLC) autochthonous model. Furthermore, efficient alveolar accumulation following inhalation in healthy mice was also observed, corroborating in vitro aerodynamic results, and opening new perspectives for further studies of effective lung therapies These results show that multistage aerosols assembled by supercritical CO2-assisted spray drying can enable efficient RNA interference therapy of pulmonary diseases including lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Administração por Inalação , Aerossóis , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Excipientes , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno
11.
Nat Commun ; 11(1): 4124, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807787

RESUMO

In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Células HCT116 , Humanos , Immunoblotting , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanomedicina/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
Bioeng Transl Med ; 3(1): 26-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376131

RESUMO

DNA damaging chemotherapy is a cornerstone of current front-line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo-resistant disease; therefore, adjuvant treatments that synergize with DNA-damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide-nucleic acid complex that facilitates tumor-specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex-mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high-grade serous OC to cytotoxic chemotherapy by blocking p38/MK2-dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.

14.
J Control Release ; 262: 1-9, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28690160

RESUMO

All-trans retinoic acid (ATRA), a derivative of vitamin A, is a common component in cosmetics and commercial acne creams as well as being a first-line chemotherapeutic agent. Today, formulations for the topical application of ATRA rely on creams and emulsions to incorporate the highly hydrophobic ATRA drug. These strategies, when applied to the skin, deliver ATRA as a single bolus, which is immediately taken up into the skin and contributes to many of the known adverse side effects of ATRA treatment, including skin irritation and hair loss. Herein we present a new concept in topical delivery of retinoids by covalently bonding the drug through a hydrolytically degradable ester linkage to a common hydrophilic polymer, polyvinyl alcohol (PVA), creating an amphiphilic nanomaterial that is water-soluble. This PVA bound ATRA can then act as a pro-drug and accumulate within the skin to allow for the sustained controlled delivery of active ATRA. This approach was demonstrated to release active ATRA out to 10days in vitro while significantly enhancing dermal accumulation of the ATRA in explant pig skin. In vivo we demonstrate that the pro-drug formulation reduces application site inflammation compared to free ATRA and retains the drug at the application site at measurable quantities for up to six days.


Assuntos
Nanoestruturas/administração & dosagem , Álcool de Polivinil/administração & dosagem , Pró-Fármacos/administração & dosagem , Tretinoína/administração & dosagem , Administração Cutânea , Animais , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Feminino , Camundongos , Células NIH 3T3 , Nanoestruturas/química , Álcool de Polivinil/química , Álcool de Polivinil/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pele/metabolismo , Suínos , Tretinoína/química , Tretinoína/farmacocinética
15.
Nanomedicine ; 13(5): 1797-1808, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28263813

RESUMO

A ligand decorated, synthetic polypeptide block copolymer platform with environment-responsive capabilities was designed. We evaluated the potential of this system to function as a polymersome for targeted-delivery of a systemic chemotherapy to tumors. Our system employed click chemistry to provide a pH-responsive polypeptide block that drives nanoparticle assembly, and a ligand (folic acid) conjugated PEG block that targets folate-receptor over-expressing cancer cells. These nanocarriers were found to encapsulate a high loading of conventional chemotherapeutics (e.g. doxorubicin at physiological pH) and release the active therapeutic at lysosomal pH upon cellular uptake. The presence of folic acid on the nanoparticle surface facilitated their active accumulation in folate-receptor-overexpressing cancer cells (KB), compared to untargeted carriers. Folate-targeted nanoparticles loaded with doxorubicin also showed enhanced tumor accumulation in folate-receptor positive KB xenografts, resulting in the suppression of tumor growth in an in vivo hind flank xenograft mouse model.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Peptídeos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Ácido Fólico , Humanos , Camundongos , Polímeros
16.
Adv Funct Mater ; 26(7): 991-1003, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27134622

RESUMO

Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.

17.
Mol Ther ; 24(6): 1070-1077, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053374

RESUMO

RNA interference (RNAi) provides a versatile therapeutic approach via silencing of specific genes, particularly undruggable targets in cancer and other diseases. However, challenges in the delivery of small interfering RNA (siRNA) have hampered clinical translation. Polymeric or periodic short hairpin RNAs (p-shRNAs)-synthesized by enzymatic amplification of circular DNA-are a recent development that can potentially address these delivery barriers by showing improved stability and complexation to enable nanoparticle packaging. Here, we modify these biomacromolecules via structural and sequence engineering coupled with selective enzymatic digestion to generate an open-ended p-shRNA (op-shRNA) that is cleaved over ten times more efficiently to yield siRNA. The op-shRNA induces considerably greater gene silencing than p-shRNA in multiple cancer cell lines up to 9 days. Furthermore, its high valency and flexibility dramatically improve complexation with a low molecular weight polycation compared to monomeric siRNA. Thus, op-shRNA provides an RNAi platform that can potentially be packaged and efficiently delivered to disease sites with higher therapeutic efficacy.


Assuntos
DNA Circular/metabolismo , RNA Interferente Pequeno/biossíntese , Ribonuclease III/genética , Linhagem Celular Tumoral , Inativação Gênica , Engenharia Genética/métodos , Humanos , Conformação de Ácido Nucleico , Poliaminas/química , Polieletrólitos , RNA Interferente Pequeno/química , Transdução Genética
18.
Nucleic Acids Res ; 44(2): 545-57, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26704983

RESUMO

Large dsRNA molecules can cause potent cytotoxic and immunostimulatory effects through the activation of pattern recognition receptors; however, synthetic versions of these molecules are mostly limited to simple sequences like poly-I:C and poly-A:U. Here we show that large RNA molecules generated by rolling circle transcription fold into periodic-shRNA (p-shRNA) structures and cause potent cytotoxicity and gene silencing when delivered to cancer cells. We determined structural requirements for the dumbbell templates used to synthesize p-shRNA, and showed that these molecules likely adopt a co-transcriptionally folded structure. The cytotoxicity of p-shRNA was robustly observed across four different cancer cell lines using two different delivery systems. Despite having a considerably different folded structure than conventional dsRNA, the cytotoxicity of p-shRNA was either equal to or substantially greater than that of poly-I:C depending on the delivery vehicle. Furthermore, p-shRNA caused greater NF-κB activation in SKOV3 cells compared to poly-I:C, indicating that it is a powerful activator of innate immunity. The tuneable sequence and combined gene silencing, immunostimulatory and cytotoxic capacity of p-shRNA make it an attractive platform for cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Sequência de Bases , Caspase 3/genética , Caspase 3/imunologia , Caspase 7/genética , Caspase 7/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Humanos , Imunidade Inata , Luciferases/antagonistas & inibidores , Luciferases/genética , Luciferases/imunologia , Dados de Sequência Molecular , NF-kappa B/biossíntese , NF-kappa B/metabolismo , Conformação de Ácido Nucleico , Poli I-C/genética , Poli I-C/imunologia , Poli I-C/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Transcrição Gênica
19.
Angew Chem Int Ed Engl ; 55(10): 3347-51, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695874

RESUMO

Packaging multiple small interfering RNA (siRNA) molecules into nanostructures at precisely defined ratios is a powerful delivery strategy for effective RNA interference (RNAi) therapy. We present a novel RNA nanotechnology based approach to produce multiple components of polymerized siRNA molecules that are simultaneously self-assembled and densely packaged into composite sponge-like porous microstructures (Multi-RNAi-MSs) by rolling circle transcription. The Multi-RNAi-MSs were designed to contain a combination of multiple polymeric siRNA molecules with precisely controlled stoichiometry within a singular microstructure by manipulating the types and ratios of the circular DNA templates. The Multi-RNAi-MSs were converted into nanosized complexes by polyelectrolyte condensation to manipulate their physicochemical properties (size, shape, and surface charge) for favorable delivery, while maintaining the multifunctional properties of the siRNAs for combined therapeutic effects. These Multi-RNAi-MS systems have great potential in RNAi-mediated biomedical applications, for example, for the treatment of cancer, genetic disorders, and viral infections.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Microscopia Eletrônica de Varredura
20.
Clin Cancer Res ; 21(19): 4410-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26034127

RESUMO

PURPOSE: Cross-talk and feedback between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell signaling pathways is critical for tumor initiation, maintenance, and adaptive resistance to targeted therapy in a variety of solid tumors. Combined blockade of these pathways-horizontal blockade-is a promising therapeutic strategy; however, compounded dose-limiting toxicity of free small molecule inhibitor combinations is a significant barrier to its clinical application. EXPERIMENTAL DESIGN: AZD6244 (selumetinib), an allosteric inhibitor of Mek1/2, and PX-866, a covalent inhibitor of PI3K, were co-encapsulated in a tumor-targeting nanoscale drug formulation-layer-by-layer (LbL) nanoparticles. Structure, size, and surface charge of the nanoscale formulations were characterized, in addition to in vitro cell entry, synergistic cell killing, and combined signal blockade. In vivo tumor targeting and therapy was investigated in breast tumor xenograft-bearing NCR nude mice by live animal fluorescence/bioluminescence imaging, Western blotting, serum cytokine analysis, and immunohistochemistry. RESULTS: Combined MAPK and PI3K axis blockade from the nanoscale formulations (160 ± 20 nm, -40 ± 1 mV) was synergistically toxic toward triple-negative breast (MDA-MB-231) and RAS-mutant lung tumor cells (KP7B) in vitro, effects that were further enhanced upon encapsulation. In vivo, systemically administered LbL nanoparticles preferentially targeted subcutaneous MDA-MB-231 tumor xenografts, simultaneously blocked tumor-specific phosphorylation of the terminal kinases Erk and Akt, and elicited significant disease stabilization in the absence of dose-limiting hepatotoxic effects observed from the free drug combination. Mice receiving untargeted, but dual drug-loaded nanoparticles exhibited progressive disease. CONCLUSIONS: Tumor-targeting nanoscale drug formulations could provide a more safe and effective means to synergistically block MAPK and PI3K in the clinic.


Assuntos
Antineoplásicos/administração & dosagem , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Nanopartículas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nanopartículas/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...