Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368251

RESUMO

Optimal design of a silicon nitride waveguide structure composed of resonant nanoantennas for efficient light coupling with interlayer exciton emitters in a MoSe2-WSe2 heterostructure is proposed. Numerical simulations demonstrate up to eight times coupling efficiency improvement and twelve times Purcell effect enhancement in comparison with a conventional strip waveguide. Achieved results can be beneficial for development of on-chip non-classical light sources.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770468

RESUMO

Single photon sources based on semiconductor quantum dots are one of the most prospective elements for optical quantum computing and cryptography. Such systems are often based on Bragg resonators, which provide several ways to control the emission of quantum dots. However, the fabrication of periodic structures with many thin layers is difficult. On the other hand, the coupling of single-photon sources with resonant nanoclusters made of high-index dielectric materials is known as a promising way for emission control. Our experiments and calculations show that the excitation of magnetic Mie-type resonance by linearly polarized light in a GaAs nanopillar oligomer with embedded InAs quantum dots leads to quantum emitters absorption efficiency enhancement. Moreover, the nanoresonator at the wavelength of magnetic dipole resonance also acts as a nanoantenna for a generated signal, allowing control over its radiation spatial profile. We experimentally demonstrated an order of magnitude emission enhancement and numerically reached forty times gain in comparison with unstructured film. These findings highlight the potential of quantum dots coupling with Mie-resonant oligomers collective modes for nanoscale single-photon sources development.

3.
Opt Lett ; 46(13): 3071-3074, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197383

RESUMO

We report the experimental observation of the UV-visible upconverted luminescence of bulk silicon under pulsed infrared excitation. We demonstrate that non-stationary distribution of excited carriers leads to the emission at spectral bands never to our knowledge observed before. We show that the doping type and concentration alter the shape of luminescence spectra. Silicon nanoparticles have a size between quantum-confined and Mie-type limits (10-100 nm) yet show increased luminescence intensity when placed atop a silicon wafer. The findings demonstrate that upconversion luminescence can become a powerful tool for nearest future silicon wafer inspection systems as a multimodal technique of measuring the several parameters of the wafer simultaneously.

4.
Nano Lett ; 20(5): 3471-3477, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324416

RESUMO

All-dielectric nanoparticle oligomers have recently emerged as promising candidates for nonlinear optical applications. Their highly resonant collective modes, however, are difficult to access by linearly polarized beams due to symmetry restraints. In this paper, we propose a new way to increase the efficiency of nonlinear processes in all-dielectric oligomers by tightly focused azimuthally polarized cylindrical vector beam illumination. We demonstrate two orders enhancement of the third-harmonic generation signal, governed by a collective optical mode represented by out-of-plane magnetic dipoles. Crucially, the collective mode is characterized by strong electromagnetic field localization in the bulk of the nonlinear material. For comparison, we measure third-harmonic generation in the same oligomer pumped with linearly and radially polarized fundamental beams, which both show significantly lower harmonic output. We also provide numerical analysis to describe and characterize the observed effect. Our findings open a new route to enhance and modulate the third-harmonic generation efficiency of Mie-resonant isolated nanostructures by tailoring the polarization of the pump beam.

5.
Philos Trans A Math Phys Eng Sci ; 375(2090)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28220003

RESUMO

Subwavelength silicon nanoparticles are known to support strongly localized Mie-type modes, including those with resonant electric and magnetic dipolar polarizabilities. Here we compare experimentally the efficiency of the third-harmonic generation from isolated silicon nanodiscs for resonant excitation at the two types of dipolar resonances. Using nonlinear spectroscopy, we observe that the magnetic dipolar mode yields more efficient third-harmonic radiation in contrast to the electric dipolar (ED) mode. This is further supported by full-wave numerical simulations, where the volume-integrated local fields and the directly simulated nonlinear response are shown to be negligible at the ED resonance compared with the magnetic one.This article is part of the themed issue 'New horizons for nanophotonics'.

6.
Nano Lett ; 16(8): 4857-61, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27403664

RESUMO

Strong Mie-type magnetic dipole resonances in all-dielectric nanostructures provide novel opportunities for enhancing nonlinear effects at the nanoscale due to the intense electric and magnetic fields trapped within the individual nanoparticles. Here we study third-harmonic generation from quadrumers of silicon nanodisks supporting high-quality collective modes associated with the magnetic Fano resonance. We observe nontrivial wavelength and angular dependencies of the generated harmonic signal featuring a multifold enhancement of the nonlinear response in oligomeric systems.

7.
Sci Rep ; 6: 28440, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27335268

RESUMO

Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial's χ((3)) was observed; the all-optical χ((3)) modulation depth was found to be approximately 70% at a pump fluence of only 20 µJ/cm(2).

8.
Nano Lett ; 15(10): 6985-90, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26393983

RESUMO

We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be governed by pulse-limited 65 fs-long two-photon absorption being enhanced by a factor of 80 with respect to the unstructured silicon film. We also show that undesirable free-carrier effects can be suppressed by a proper spectral positioning of the magnetic resonance, making such a structure the fastest all-optical switch operating at the nanoscale.


Assuntos
Magnetismo , Nanoestruturas , Fótons
9.
Nano Lett ; 14(11): 6488-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25322350

RESUMO

We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...