Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 113 ( Pt 14): 2535-44, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10862711

RESUMO

Sarcoglycan is a multimeric, integral membrane glycoprotein complex that associates with dystrophin. Mutations in individual sarcoglycan subunits have been identified in inherited forms of muscular dystrophy. To evaluate the contributions of sarcoglycan and dystrophin to muscle membrane stability and muscular dystrophy, we compared muscle lacking specific sarcoglycans or dystrophin. Here we report that mice lacking (delta)-sarcoglycan developed muscular dystrophy and cardiomyopathy similar to mice lacking (gamma)-sarcoglycan. However, unlike muscle lacking (gamma)-sarcoglycan, (delta)-sarcoglycan-deficient muscle was sensitive to eccentric contraction-induced disruption of the plasma membrane. In the absence of (delta)-sarcoglycan, (alpha)-, (beta)- and (gamma)-sarcoglycan were undetectable, while dystrophin was expressed at normal levels. In contrast, without (gamma)-sarcoglycan, reduced levels of (alpha)-, (beta)- and (delta)-sarcoglycan were expressed, glycosylated and formed a complex with each other. Thus, the elimination of (gamma)- and (delta)-sarcoglycan had different molecular consequences for the assembly and function of the dystrophin-glycoprotein complex. Furthermore, these molecular differences were associated with different mechanical consequences for the muscle plasma membrane. Through this in vivo analysis, a model for sarcoglycan assembly is proposed.


Assuntos
Cardiomiopatias/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Distrofina/genética , Distrofina/fisiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Distrofia Muscular Animal/genética , Animais , Cardiomiopatias/genética , Permeabilidade da Membrana Celular , Proteínas do Citoesqueleto/química , Distrofina/metabolismo , Marcação de Genes , Glicosilação , Substâncias Macromoleculares , Glicoproteínas de Membrana/química , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout/genética , Modelos Biológicos , Contração Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Mutação , Miocárdio/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Quaternária de Proteína/genética , Sarcoglicanas
2.
Proc Natl Acad Sci U S A ; 96(19): 10723-8, 1999 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-10485893

RESUMO

In humans, mutations in the genes encoding components of the dystrophin-glycoprotein complex cause muscular dystrophy. Specifically, primary mutations in the genes encoding alpha-, beta-, gamma-, and delta-sarcoglycan have been identified in humans with limb-girdle muscular dystrophy. Mice lacking gamma-sarcoglycan develop progressive muscular dystrophy similar to human muscular dystrophy. Without gamma-sarcoglycan, beta- and delta-sarcoglycan are unstable at the muscle membrane and alpha-sarcoglycan is severely reduced. The expression and localization of dystrophin, dystroglycan, and laminin-alpha2, a mechanical link between the actin cytoskeleton and the extracellular matrix, appears unaffected by the loss of sarcoglycan. We assessed the functional integrity of this mechanical link and found that isolated muscles lacking gamma-sarcoglycan showed normal resistance to mechanical strain induced by eccentric muscle contraction. Sarcoglycan-deficient muscles also showed normal peak isometric and tetanic force generation. Furthermore, there was no evidence for contraction-induced injury in mice lacking gamma-sarcoglycan that were subjected to an extended, rigorous exercise regimen. These data demonstrate that mechanical weakness and contraction-induced muscle injury are not required for muscle degeneration and the dystrophic process. Thus, a nonmechanical mechanism, perhaps involving some unknown signaling function, likely is responsible for muscular dystrophy where sarcoglycan is deficient.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/fisiologia , Distrofia Muscular Animal/enzimologia , Fatores Etários , Animais , Peso Corporal , Creatina Quinase/sangue , Proteínas do Citoesqueleto/genética , Glicoproteínas de Membrana/genética , Camundongos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Mutagênese , Condicionamento Físico Animal/fisiologia , Sarcoglicanas , Estresse Mecânico , Fatores de Tempo
3.
J Clin Invest ; 104(4): 375-81, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10449429

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene, leading to the absence of the dystrophin protein in striated muscle. A significant number of these mutations are premature stop codons. On the basis of the observation that aminoglycoside treatment can suppress stop codons in cultured cells, we tested the effect of gentamicin on cultured muscle cells from the mdx mouse - an animal model for DMD that possesses a premature stop codon in the dystrophin gene. Exposure of mdx myotubes to gentamicin led to the expression and localization of dystrophin to the cell membrane. We then evaluated the effects of differing dosages of gentamicin on expression and functional protection of the muscles of mdx mice. We identified a treatment regimen that resulted in the presence of dystrophin in the cell membrane in all striated muscles examined and that provided functional protection against muscular injury. To our knowledge, our results are the first to demonstrate that aminoglycosides can suppress stop codons not only in vitro but also in vivo. Furthermore, these results raise the possibility of a novel treatment regimen for muscular dystrophy and other diseases caused by premature stop codon mutations. This treatment could prove effective in up to 15% of patients with DMD.


Assuntos
Antibacterianos/farmacologia , Distrofina/genética , Distrofina/fisiologia , Gentamicinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/fisiopatologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Membrana Celular/metabolismo , Células Cultivadas , Códon de Terminação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Gentamicinas/administração & dosagem , Gentamicinas/toxicidade , Audição/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/efeitos dos fármacos , Distrofia Muscular Animal/genética , Mutação
4.
Acta Physiol Scand ; 167(4): 301-5, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10632630

RESUMO

Insulin-like growth factor I (IGF-I) is critical in promoting growth of skeletal muscle. When IGF-I is introduced into mouse hindlimb muscles by viral-mediated gene transfer, local overexpression of IGF-I produces significant increases in muscle mass and strength compared with untreated controls (Barton-Davis et al. 1998). We have proposed that this functional hypertrophy is primarily owing to the activation of satellite cells which leads to increased muscle regeneration. In order to test if satellite cells are essential in mediating the hypertrophic effects of IGF-I, we used gamma radiation to destroy the proliferative capacity of satellite cells. The right hindlimbs of adult C57BL/6 male mice were subjected to one of the following treatments: (1) 2,500 rad gamma radiation only, (2) viral-mediated gene transfer of IGF-I only, (3) 2,500 rad gamma radiation plus viral-mediated gene transfer of IGF-I, or (4) no intervention as a control. Approximately 4 months after treatment, the extensor digitorum longus muscles (EDL) from both hindlimbs were removed for mechanical and morphological measurements. Treatment with gamma radiation significantly prevented normal growth of the muscle. When combined with IGF-I treatment, approximately half of the IGF-I effect was prevented by gamma radiation treatment. This suggests that the remaining half of IGF-I induced hypertrophy is owing to paracrine/autocrine effects on the adult myofibres. Thus, these data are consistent with a mechanism by which IGF-I induced muscle hypertrophy via a combination of satellite cell activation and increasing protein synthesis in differentiated myofibres.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Músculo Esquelético/patologia , Adenoviridae/genética , Animais , Divisão Celular/efeitos da radiação , Raios gama , Técnicas de Transferência de Genes , Vetores Genéticos , Hipertrofia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Tamanho do Órgão
5.
Proc Natl Acad Sci U S A ; 95(26): 15603-7, 1998 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-9861016

RESUMO

During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.


Assuntos
Envelhecimento/fisiologia , Dependovirus/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Músculo Esquelético/fisiologia , Transcrição Gênica , Animais , Terapia Genética/métodos , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Contração Isométrica , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...