Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(5): e4989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659213

RESUMO

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Congelamento , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína
2.
R Soc Open Sci ; 7(10): 201507, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204483

RESUMO

By using a combination of experimental neutron scattering techniques, it is possible to obtain a statistical perspective on red blood cell (RBC) shape in suspensions, and the inter-relationship with protein interactions and dynamics inside the confinement of the cell membrane. In this study, we examined the ultrastructure of RBC and protein-protein interactions of haemoglobin (Hb) in them using ultra-small-angle neutron scattering and small-angle neutron scattering (SANS). In addition, we used the neutron backscattering method to access Hb motion on the ns time scale and Å length scale. Quasi-elastic neutron scattering (QENS) experiments were performed to measure diffusive motion of Hb in RBCs and in an RBC lysate. By using QENS, we probed both internal Hb dynamics and global protein diffusion, on the accessible time scale and length scale by QENS. Shape changes of RBCs and variation of intracellular Hb concentration were induced by addition of the Na+-selective ionophore monensin and the K+-selective one, valinomycin. The experimental SANS and QENS results are discussed within the framework of crowded protein solutions, where free motion of Hb is obstructed by mutual interactions.

3.
Phys Chem Chem Phys ; 21(34): 18727-18740, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31424463

RESUMO

The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.


Assuntos
Proteínas de Arabidopsis/química , Proteínas Intrinsicamente Desordenadas/química , Concentração Osmolar , Conformação Proteica , Espalhamento a Baixo Ângulo , Solventes/química , Raios X
4.
Nanoscale ; 11(5): 2401-2411, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30667012

RESUMO

Compact self-assembled monolayers (SAMs) of perfluorododecyl iodide (I-PFC12) of reproducible thickness (1.2 nm) are shown to form on silicon wafers. The SAMs have a high fluorine content (95%) and convey an extremely low surface energy to the silicon wafers (4.3 mN m-1), lower than previously reported in the literature for perfluorinated monolayers, and stable for over eight weeks. Shorter chain iodo-perfluorinated (I-PFC8) or bromo-perfluorinated molecules (Br-PFC10) led to less dense layers. The monolayers are stable to heating up to 60 °C, with some loss up to 150 °C. The I-PFC12 monolayer increases the work function of silicon wafers from 3.6 V to 4.4 eV, a factor that could be gainfully used in photovoltaic applications. The I-PFC12 monolayers can be transferred into patterns onto silica substrates by micro-contact printing. The NMR data and the reproducible thickness point to an upright halogen bonding interaction between the iodine in I-PFC12 and the surface oxygen on the native silica layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...