Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937625

RESUMO

CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.

2.
Proc Natl Acad Sci U S A ; 120(43): e2304689120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856544

RESUMO

The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.


Assuntos
Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Humanos , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos H-2 , Antígenos de Histocompatibilidade/metabolismo , Camundongos Endogâmicos C57BL
3.
Nat Cancer ; 2(9): 904-918, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34746799

RESUMO

Chimeric antigen receptor (CAR) T cells showed great activity in hematologic malignancies. However, heterogeneous antigen expression in tumor cells and suboptimal CAR-T cell persistence remain critical aspects to achieve clinical responses in patients with solid tumors. Here we show that CAR-T cells targeting simultaneously two tumor-associated antigens and providing transacting CD28 and 4-1BB costimulation, while sharing the sane CD3ζ-chain cause rapid antitumor effects in in vivo stress conditions, protection from tumor re-challenge and prevention of tumor escape due to low antigen density. Molecular and signaling studies indicate that T cells engineered with the proposed CAR design demonstrate sustained phosphorylation of T cell receptor-associated (TCR) signaling molecules and a molecular signature supporting CAR-T cell proliferation and long-term survival. Furthermore, metabolic profiling of CAR-T cells displayed induction of glycolysis that sustains rapid effector T cell function, but also preservation of oxidative functions, which are critical for T cell long-term persistence.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Antígenos CD28/genética , Humanos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795386

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells are effective in B-cell malignancies. However, heterogeneous antigen expression and antigen loss remain important limitations of targeted immunotherapy in solid tumors. Therefore, targeting multiple tumor-associated antigens simultaneously is expected to improve the outcome of CAR-T cell therapies. Due to the instability of single-chain variable fragments, it remains challenging to develop the simultaneous targeting of multiple antigens using traditional single-chain fragment variable (scFv)-based CARs. METHODS: We used Humabody VH domains derived from a transgenic mouse to obtain fully human prostate-specific membrane antigen (PSMA) VH and mesothelin (MSLN) VH sequences and redirect T cell with VH based-CAR. The antitumor activity and mode of action of PSMA VH and MSLN VH were evaluated in vitro and in vivo compared with the traditional scFv-based CARs. RESULTS: Human VH domain-based CAR targeting PSMA and MSLN are stable and functional both in vitro and in vivo. VH modules in the bispecific format are capable of binding their specific target with similar affinity as their monovalent counterparts. Bispecific CARs generated by joining two human antibody VH domains can prevent tumor escape in tumor with heterogeneous antigen expression. CONCLUSIONS: Fully human antibody VH domains can be used to generate functional CAR molecules, and redirected T cells elicit antitumoral responses in solid tumors at least as well as conventional scFv-based CARs. In addition, VH domains can be used to generate bispecific CAR-T cells to simultaneously target two different antigens expressed by tumor cells, and therefore, achieve better tumor control in solid tumors.


Assuntos
Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Região Variável de Imunoglobulina/imunologia , Imunoterapia Adotiva , Mesotelina/imunologia , Neoplasias da Próstata/terapia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Humanos , Região Variável de Imunoglobulina/genética , Ativação Linfocitária , Masculino , Camundongos Endogâmicos NOD , Fenótipo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Cancer Res ; 27(21): 5951-5960, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858858

RESUMO

PURPOSE: CD19-redirected chimeric antigen receptor (CAR.CD19) T cells promote clinical responses in patients with relapsed/refractory B-cell non-Hodgkin lymphomas and chronic lymphocytic leukemia (CLL). However, patients showing sustained clinical responses after CAR.CD19-T treatment show increased infection risk due to compromised B-lymphocyte recovery. Mature B cell-derived malignancies express monoclonal immunoglobulins bearing either κ- or λ-light chains. We initially constructed CAR-T targeting the κ-light-chain (CAR.κ) and established a clinical study with it. After optimizing the CAR molecule, cells developed CAR-T targeting the λ-light chain (CAR.λ) and we explored their antitumor activity. EXPERIMENTAL DESIGN: Using Igλ+ lymphoma cell lines and patient-derived Igλ+ CLL cells, we evaluated the in vitro tumor cytotoxicity and cytokine profiles of CAR.λ. We also assessed the in vivo efficacy of CAR.λ in xenograft Igλ+ lymphoma models including a patient-derived xenograft (PDX) of mantle cell lymphoma, and the effects of λ- or κ-light chain-specific CAR-T on normal B lymphocytes in a humanized murine model. RESULTS: CAR.λ demonstrated antitumor effects against Igλ+ lymphoma cells and patient-derived CLL cells in vitro, and in vivo in xenograft and PDX Igλ+ lymphoma murine models. Antitumor activity of CAR.λ was superimposable to CAR.CD19. Furthermore, we demonstrated in the humanized murine model that λ- or κ-light chain-specific CAR-T cells only depleted the corresponding targeted light chain-expressing normal B cells, while sparing the reciprocal light chain carrying B cells. CONCLUSIONS: Adoptive transfer of CAR.λ and CAR.κ-T cells represents a useful and alternative modality to CAR.CD19-T cells in treating mature B-cell malignancies with minimal impact on humoral immunity.See related commentary by Jain and Locke, p. 5736.


Assuntos
Linfócitos B/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Imunoterapia , Linfoma/imunologia , Linfoma/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos
6.
Clin Cancer Res ; 27(11): 3141-3153, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33531429

RESUMO

PURPOSE: The development of safe and effective chimeric antigen receptor (CAR) T-cell therapy for acute myeloid leukemia (AML) has largely been limited by the concomitant expression of most AML-associated surface antigens on normal myeloid progenitors and by the potential prolonged disruption of normal hematopoiesis by the immunotargeting of these antigens. The purpose of this study was to evaluate B7-homolog 3 (B7-H3) as a potential target for AML-directed CAR T-cell therapy. B7-H3, a coreceptor belonging to the B7 family of immune checkpoint molecules, is overexpressed on the leukemic blasts of a significant subset of patients with AML and may overcome these limitations as a potential target antigen for AML-directed CAR-T therapy. EXPERIMENTAL DESIGN: B7-H3 expression was evaluated on AML cell lines, primary AML blasts, and normal bone marrow progenitor populations. The antileukemia efficacy of B7-H3-specific CAR-T cells (B7-H3.CAR-T) was evaluated using in vitro coculture models and xenograft models of disseminated AML, including patient-derived xenograft models. The potential hematopoietic toxicity of B7-H3.CAR-Ts was evaluated in vitro using colony formation assays and in vivo in a humanized mouse model. RESULTS: B7-H3 is expressed on monocytic AML cell lines and on primary AML blasts from patients with monocytic AML, but is not significantly expressed on normal bone marrow progenitor populations. B7-H3.CAR-Ts exhibit efficient antigen-dependent cytotoxicity in vitro and in xenograft models of AML, and are unlikely to cause unacceptable hematopoietic toxicity. CONCLUSIONS: B7-H3 is a promising target for AML-directed CAR-T therapy. B7-H3.CAR-Ts control AML and have a favorable safety profile in preclinical models.


Assuntos
Antígenos B7/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular/métodos , Receptores de Antígenos Quiméricos , Animais , Antígenos B7/genética , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Immunol Res ; 9(4): 441-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547226

RESUMO

Chimeric antigen receptor (CAR) tonic signaling, defined as spontaneous activation and release of proinflammatory cytokines by CAR-T cells, is considered a negative attribute because it leads to impaired antitumor effects. Here, we report that CAR tonic signaling is caused by the intrinsic instability of the mAb single-chain variable fragment (scFv) to promote self-aggregation and signaling via the CD3ζ chain incorporated into the CAR construct. This phenomenon was detected in a CAR encoding either CD28 or 4-1BB costimulatory endodomains. Instability of the scFv was caused by specific amino acids within the framework regions (FWR) that can be identified by computational modeling. Substitutions of the amino acids causing instability, or humanization of the FWRs, corrected tonic signaling of the CAR, without modifying antigen specificity, and enhanced the antitumor effects of CAR-T cells. Overall, we demonstrated that tonic signaling of CAR-T cells is determined by the molecular instability of the scFv and that computational analyses of the scFv can be implemented to correct the scFv instability in CAR-T cells with either CD28 or 4-1BB costimulation.


Assuntos
Antígenos CD28/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citocinas/biossíntese , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382402

RESUMO

CAR T therapy targeting solid tumors is restrained by limited infiltration and persistence of those cells in the tumor microenvironment (TME). Here, we developed approaches to enhance the activity of CAR T cells using an orthotopic model of locally advanced breast cancer. CAR T cells generated from Th/Tc17 cells given with the STING agonists DMXAA or cGAMP greatly enhanced tumor control, which was associated with enhanced CAR T cell persistence in the TME. Using single-cell RNA sequencing, we demonstrate that DMXAA promoted CAR T cell trafficking and persistence, supported by the generation of a chemokine milieu that promoted CAR T cell recruitment and modulation of the immunosuppressive TME through alterations in the balance of immune-stimulatory and suppressive myeloid cells. However, sustained tumor regression was accomplished only with the addition of anti-PD-1 and anti-GR-1 mAb to Th/Tc17 CAR T cell therapy given with STING agonists. This study provides new approaches to enhance adoptive T cell therapy in solid tumors.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Membrana/agonistas , Receptores de Antígenos Quiméricos/metabolismo , Células 3T3 , Animais , Linhagem Celular , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunoterapia Adotiva/métodos , Camundongos , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia
9.
Cell Death Differ ; 28(1): 156-169, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694652

RESUMO

p53 plays a pivotal role in controlling the differentiation of mesenchymal stem cells (MSCs) by regulating genes involved in cell cycle and early steps of differentiation process. In the context of osteogenic differentiation of MSCs and bone homeostasis, the osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB (OPG/RANKL/RANK) axis is a critical signaling pathway. The absence or loss of function of p53 has been implicated in aberrant osteogenic differentiation of MSCs that results in higher bone formation versus erosion, leading to an unbalanced bone remodeling. Here, we show by microCT that mice with p53 deletion systemically or specifically in mesenchymal cells possess significantly higher bone density than their respective littermate controls. There is a negative correlation between p53 and OPG both in vivo by analysis of serum from p53+/+, p53+/-, and p53-/- mice and in vitro by p53 knockdown and ChIP assay in MSCs. Notably, high expression of Opg or its combination with low level of p53 are prominent features in clinical cancer lesion of osteosarcoma and prostate cancer respectively, which correlate with poor survival. Intra-bone marrow injection of prostate cancer cells, together with androgen can suppress p53 expression and enhance local Opg expression, leading to an enhancement of bone density. Our results support the notion that MSCs, as osteoblast progenitor cells and one major component of bone microenvironment, represent a cellular source of OPG, whose amount is regulated by the p53 status. It also highlights a key role for the p53-OPG axis in regulating the cancer associated bone remodeling.


Assuntos
Remodelação Óssea , Células-Tronco Mesenquimais/metabolismo , Osteoprotegerina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , NF-kappa B/metabolismo , Osteogênese/genética , Osteossarcoma/patologia , Neoplasias da Próstata/patologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Fator de Transcrição RelA , Proteína Supressora de Tumor p53/genética
10.
Cancer Cell ; 37(2): 216-225.e6, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32004441

RESUMO

Chimeric antigen receptor (CAR) T cell costimulation mediated by CD28 and 4-1BB is essential for CAR-T cell-induced tumor regression. However, CD28 and 4-1BB differentially modulate kinetics, metabolism and persistence of CAR-T cells, and the mechanisms governing these differences are not fully understood. We found that LCK recruited into the synapse of CD28-encoding CAR by co-receptors causes antigen-independent CAR-CD3ζ phosphorylation and increased antigen-dependent T cell activation. In contrast, the synapse formed by 4-1BB-encoding CAR recruits the THEMIS-SHP1 phosphatase complex that attenuates CAR-CD3ζ phosphorylation. We further demonstrated that the CAR synapse can be engineered to recruit either LCK to enhance the kinetics of tumor killing of 4-1BB CAR-T cells or SHP1 to tune down cytokine release of CD28 CAR-T cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
11.
Nat Biotechnol ; 38(4): 448-459, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015548

RESUMO

Cytokines that stimulate T cell proliferation, such as interleukin (IL)-15, have been explored as a means of boosting the antitumor activity of chimeric antigen receptor (CAR) T cells. However, constitutive cytokine signaling in T cells and activation of bystander cells may cause toxicity. IL-23 is a two-subunit cytokine known to promote proliferation of memory T cells and T helper type 17 cells. We found that, upon T cell antigen receptor (TCR) stimulation, T cells upregulated the IL-23 receptor and the IL-23α p19 subunit, but not the p40 subunit. We engineered expression of the p40 subunit in T cells (p40-Td cells) and obtained selective proliferative activity in activated T cells via autocrine IL-23 signaling. In comparison to CAR T cells, p40-Td CAR T cells showed improved antitumor capacity in vitro, with increased granzyme B and decreased PD-1 expression. In two xenograft and two syngeneic solid tumor mouse models, p40-Td CAR T cells showed superior efficacy in comparison to CAR T cells and attenuated side effects in comparison to CAR T cells expressing IL-18 or IL-15.


Assuntos
Imunoterapia Adotiva/métodos , Interleucina-23/metabolismo , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-23/genética , Ativação Linfocitária , Camundongos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Rep ; 16(3): 769-80, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27396328

RESUMO

Osteoblasts and adipocytes are derived from a common precursor, mesenchymal stem cells (MSCs). Alterations in the normal fate of differentiating MSCs are involved in the development of obesity and osteoporosis. Here, we report that viable motheaten (me(v)) mice, which are deficient in the SH2-domain-containing phosphatase-1 (SHP1), develop osteoporosis spontaneously. Consistently, MSCs from me(v)/me(v) mice exhibit significantly reduced osteogenic potential and greatly increased adipogenic potential. When MSCs were transplanted into nude mice, SHP1-deficient MSCs resulted in diminished bone formation compared with wild-type MSCs. SHP1 was found to bind to GSK3ß and suppress its kinase activity by dephosphorylating pY216, thus resulting in ß-catenin stabilization. Mice, in which SHP1 was deleted in MSCs using SHP1(fl/fl)Dermo1-cre, displayed significantly decreased bone mass and increased adipose tissue. Taken together, these results suggest a possible role for SHP1 in controlling tissue homeostasis through modulation of MSC differentiation via Wnt signaling regulation.


Assuntos
Densidade Óssea/fisiologia , Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Adipócitos/metabolismo , Adipogenia/fisiologia , Animais , Células Cultivadas , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteogênese/fisiologia , beta Catenina/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(52): E7239-48, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26669445

RESUMO

Obesity-associated inflammation is accompanied by the accumulation of adipose tissue macrophages (ATMs), which is believed to predispose obese individuals to insulin resistance. CD11b (integrin αM) is highly expressed on monocytes and macrophages and is critical for their migration and function. We found here that high-fat diet-induced insulin resistance was significantly reduced in CD11b-deficient mice. Interestingly, the recruitment of monocytes to adipose tissue is impaired when CD11b is deficient, although the cellularity of ATMs in CD11b-deficient mice is higher than that in wild-type mice. We further found that the increase in ATMs is caused mainly by their vigorous proliferation in the absence of CD11b. Moreover, the proliferation and alternative activation of ATMs are regulated by the IL-4/STAT6 axis, which is inhibited by CD11b through the activity of phosphatase SHP-1. Thus, CD11b plays a critical role in obesity-induced insulin resistance by limiting the proliferation and alternative activation of ATMs.


Assuntos
Antígeno CD11b/genética , Proliferação de Células/genética , Resistência à Insulina/genética , Macrófagos/metabolismo , Obesidade/genética , Tecido Adiposo/metabolismo , Animais , Antígeno CD11b/metabolismo , Citometria de Fluxo , Expressão Gênica , Immunoblotting , Interleucina-4/metabolismo , Ativação de Macrófagos/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Obesidade/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT6/metabolismo
15.
J Mol Endocrinol ; 53(3): 367-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298143

RESUMO

Recent reports have highlighted the roles of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic and inflammatory processes. However, the potential function of FFAR2 in type 1 diabetes (T1D) remains unexplored. Our results indicated that the mRNA level of FFAR2 was upregulated in peripheral blood mononuclear cells of T1D patients. The human FFAR2 promoter regions were cloned, and luciferase reporter assays revealed that NFκB activation induced FFAR2 expression. Furthermore, we showed that FFAR2 activation by overexpression induced cell apoptosis through ERK signaling. Finally, treatment with the FFAR2 agonists acetate or phenylacetamide 1 attenuated the inflammatory response in multiple-low-dose streptozocin-induced diabetic mice, and improved the impaired glucose tolerance. These results indicate that FFAR2 may play a protective role by inducing apoptosis of infiltrated macrophage in the pancreas through its feedback upregulation and activation, thus, in turn, improving glucose homeostasis in diabetic mice. These findings highlight FFAR2 as a potential therapeutic target of T1D, representing a link between immune response and glucose homeostasis.


Assuntos
Apoptose/genética , Diabetes Mellitus Tipo 1/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Adulto Jovem
16.
Stem Cells ; 32(2): 327-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123709

RESUMO

An imbalance between normal adipogenesis and osteogenesis by mesenchymal stem cells (MSCs) has been shown to be related to various human metabolic diseases, such as obesity and osteoporosis; however, the underlying mechanisms remain elusive. We found that the interaction between osteopontin (OPN), an arginine-glycine-aspartate-containing glycoprotein, and integrin αv/ß1 plays a critical role in the lineage determination of MSCs. Although OPN is a well-established marker during osteogenesis, its role in MSC differentiation is still unknown. Our study reveals that blockade of OPN function promoted robust adipogenic differentiation, while inhibiting osteogenic differentiation. Re-expression of OPN restored a normal balance between adipogenesis and osteogenesis in OPN(-/-) MSCs. Retarded bone formation by OPN(-/-) MSCs was also verified by in vivo implantation with hydroxyapatite-tricalcium phosphate, a bone-forming matrix. The role of extracellular OPN in MSC differentiation was further demonstrated by supplementation and neutralization of OPN. Blocking well-known OPN receptors integrin αv/ß1 but not CD44 also affected MSC differentiation. Further studies revealed that OPN inhibits the C/EBPs signaling pathway through integrin αv/ß1. Consistent with these in vitro results, OPN(-/-) mice had a higher fat to total body weight ratio than did wild-type mice. Therefore, our study demonstrates a novel role for OPN-integrin αv/ß1 in regulating MSC differentiation.


Assuntos
Adipogenia/genética , Osteogênese/genética , Osteopontina/metabolismo , Receptores de Vitronectina/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Humanos , Células-Tronco Mesenquimais , Camundongos , Osteoblastos/metabolismo , Osteopontina/genética , Mapas de Interação de Proteínas/genética , Receptores de Vitronectina/genética
17.
J Biol Chem ; 288(16): 11074-9, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23449975

RESUMO

MSCs possess potent immunosuppressive capacity. We have reported that mouse MSCs inhibit T cell proliferation and function via nitric oxide. This immune regulatory capacity of MSCs is induced by the inflammatory cytokines IFNγ together with either TNFα or IL-1ß. This effect of inflammatory cytokines on MSCs is extraordinary; logarithmic increases in the expression of iNOS and chemokines are often observed. To investigate the molecular mechanisms underlying this robust effect of cytokines, we examined the expression of microRNAs in MSCs before and after cytokine treatment. We found that miR-155 is most significantly up-regulated. Furthermore, our results showed that miR-155 inhibits the immunosuppressive capacity of MSCs by reducing iNOS expression. We further demonstrated that miR-155 targets TAK1-binding protein 2 (TAB2) to regulate iNOS expression. Additionally, knockdown of TAB2 reduced iNOS expression. In summary, our study demonstrated that miR-155 inhibits the immunosuppressive capacity of MSCs by reducing iNOS expression by targeting TAB2. Our data revealed a novel role of miR-155 in regulating the immune modulatory activities of MSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Tolerância Imunológica/fisiologia , Células-Tronco Mesenquimais/imunologia , MicroRNAs/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Trends Immunol ; 33(3): 136-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22227317

RESUMO

Mesenchymal stem cells (MSCs), also called multipotent mesenchymal stromal cells, exist in almost all tissues and are a key cell source for tissue repair and regeneration. Under pathological conditions, such as tissue injury, these cells are mobilized towards the site of damage. Tissue damage is usually accompanied by proinflammatory factors, produced by both innate and adaptive immune responses, to which MSCs are known to respond. Indeed, recent studies have shown that there are bidirectional interactions between MSCs and inflammatory cells, which determine the outcome of MSC-mediated tissue repair processes. Although many details of these interactions remain to be elucidated, we provide here a synthesis of the current status of this newly emerging and rapidly advancing field.


Assuntos
Células-Tronco Mesenquimais/imunologia , Imunidade Adaptativa , Animais , Doença Crônica , Humanos , Imunidade Inata , Inflamação/imunologia
19.
Cell Res ; 20(5): 510-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20368733

RESUMO

Mesenchymal stem cells (MSCs) have great potential for treating various diseases, especially those related to tissue damage involving immune reactions. Various studies have demonstrated that MSCs are strongly immunosuppressive in vitro and in vivo. Our recent studies have shown that un-stimulated MSCs are indeed incapable of immunosuppression; they become potently immunosuppressive upon stimulation with the supernatant of activated lymphocytes, or with combinations of IFN-gamma with TNF-alpha, IL-1alpha or IL-1beta. This observation revealed that under certain circumstances, inflammatory cytokines can actually become immunosuppressive. We showed that there is a species variation in the mechanisms of MSC-mediated immunosuppression: immunosuppression by cytokine-primed mouse MSCs is mediated by nitric oxide (NO), whereas immunosuppression by cytokine-primed human MSCs is executed through indoleamine 2, 3-dioxygenase (IDO). Additionally, upon stimulation with the inflammatory cytokines, both mouse and human MSCs secrete several leukocyte chemokines that apparently serve to attract immune cells into the proximity with MSCs, where NO or IDO is predicted to be most active. Therefore, immunosuppression by inflammatory cytokine-stimulated MSCs occurs via the concerted action of chemokines and immune-inhibitory NO or IDO produced by MSCs. Thus, our results provide novel information about the mechanisms of MSC-mediated immunosuppression and for better application of MSCs in treating tissue injuries induced by immune responses.


Assuntos
Doenças do Sistema Imunitário/terapia , Terapia de Imunossupressão/métodos , Células-Tronco Mesenquimais/imunologia , Cicatrização , Animais , Humanos , Doenças do Sistema Imunitário/imunologia , Terapia de Imunossupressão/tendências , Células-Tronco Mesenquimais/citologia
20.
J Environ Sci (China) ; 19(10): 1257-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18062427

RESUMO

Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 1200 mg/L could be totally biodegraded by A. radioresistens USTB-04 as the sole carbon source less than 4 d in the presence of phosphate and urea as phosphorus and nitrogen sources, respectively. Biodegradation of MP was also achieved using cell-free extract of A. radioresistens USTB-04. MP at an initial concentration of 130 mg/L was completely biodegraded in 2 h in the presence of cell-free extract with a protein concentration of 148.0 mg/L, which was increased with the increase of pH from 5.0 to 8.0. Contrary to published reports, no intermediate or final degradation metabolites of MP could be observed. Thus we suggest that the cleavage of C-C bond on the benzene ring other than P-O bond may be the biodegradation pathway of MP by A. radioresistens USTB-04.


Assuntos
Acinetobacter/metabolismo , Metil Paration/metabolismo , Acinetobacter/crescimento & desenvolvimento , Biodegradação Ambiental , Prótons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...