Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572744

RESUMO

This commentary integrates historical and modern findings that underpin our understanding of the cell-specific functions of the Tribbles (TRIB) proteins that bear on tumorigenesis. We touch on the initial discovery of roles played by mammalian TRIB proteins in a diverse range of cell-types and pathologies, for example, TRIB1 in regulatory T-cells, TRIB2 in acute myeloid leukaemia and TRIB3 in gliomas; the origins and diversity of TRIB1 transcripts; microRNA-mediated (miRNA) regulation of TRIB1 transcript decay and translation; the substantial conformational changes that ensue on binding of TRIB1 to the transcription factor C/EBPα; and the unique pocket formed by TRIB1 to sequester its C-terminal motif bearing a binding site for the E3 ubiquitin ligase COP1. Unashamedly, the narrative is relayed through the perspective of the Tribbles Research and Innovation Network, and its establishment, progress and future ambitions: the growth of TRIB and COP1 research to hasten discovery of their cell-specific contributions to health and obesity-related cancers.

2.
Int J Cardiol ; 333: 215-218, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33737169

RESUMO

BACKGROUND: Family history (FH) of cardiovascular disease (CVD) in first degree relatives (FDR) is a major risk factor, especially for premature events. Data are sparse on FH of different manifestations of CVD among FDRs of patients with premature myocardial infarction (MI), chronic stable angina (CSA) or peripheral vascular disease (PVD). METHODS: We obtained FHs from first degree relatives (parents or siblings) of 230 consecutive patients with premature (men < 60 and women < 65 years) CVD, including 79 wth MI, 39 CSA, 51 PVD and 61 blood donors. Among 1225 parents or siblings, 421 had MI, 222 CSA, 261PVD and 321 were among blood donors. RESULTS: FH of MI were 5.6% (18/321) among blood donors, 14.0% (59/421) among patients with premature MI, 14.4% (32/222) CSA, and 8.0% (21/261) PVD. (all p < 0.05). For FH of CSA the corresponding frequencies were 3.7% 5.2%, 11.3%, and 6.9%. (all p < 0.05). For PVD, the corresponding frequencies were 2.1%, 3.4%, 0.9% and 0.7%, respectively. (p = ns). CONCLUSIONS: These data are compatible with the hypothesis that FH of MI, CSA and PVD are significantly different for patients with premature MI or CSA but not PVD.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Família , Feminino , Humanos , Masculino , Anamnese , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Fatores de Risco
4.
Sci Adv ; 5(10): eaax9183, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692955

RESUMO

Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Depuradores Classe E/metabolismo
5.
Atherosclerosis ; 291: 62-70, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704552

RESUMO

Lipoprotein(a), Lp(a), is a modified atherogenic low-density lipoprotein particle that contains apolipoprotein(a). Its levels are highly heritable and variable in the population. This consensus statement by HEART UK is based on the evidence that Lp(a) is an independent cardiovascular disease (CVD) risk factor, provides recommendations for its measurement in clinical practice and reviews current and emerging therapeutic strategies to reduce CVD risk. Ten statements summarise the most salient points for practitioners and patients with high Lp(a). HEART UK recommends that Lp(a) is measured in adults as follows: 1) those with a personal or family history of premature atherosclerotic CVD; 2) those with first-degree relatives who have Lp(a) levels >200 nmol/l; 3) patients with familial hypercholesterolemia; 4) patients with calcific aortic valve stenosis and 5) those with borderline (but <15%) 10-year risk of a cardiovascular event. The management of patients with raised Lp(a) levels should include: 1) reducing overall atherosclerotic risk; 2) controlling dyslipidemia with a desirable non-HDL-cholesterol level of <100 mg/dl (2.5 mmol/l) and 3) consideration of lipoprotein apheresis.


Assuntos
Dislipidemias/sangue , Lipoproteína(a)/sangue , Biomarcadores/sangue , Remoção de Componentes Sanguíneos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Tomada de Decisão Clínica , Consenso , Regulação para Baixo , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Dislipidemias/terapia , Humanos , Hipolipemiantes/uso terapêutico , Medição de Risco , Fatores de Risco
6.
Atherosclerosis ; 255: 128-139, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27839699

RESUMO

This consensus statement addresses the current three main modalities of treatment of homozygous familial hypercholesterolaemia (HoFH): pharmacotherapy, lipoprotein (Lp) apheresis and liver transplantation. HoFH may cause very premature atheromatous arterial disease and death, despite treatment with Lp apheresis combined with statin, ezetimibe and bile acid sequestrants. Two new classes of drug, effective in lowering cholesterol in HoFH, are now licensed in the United Kingdom. Lomitapide is restricted to use in HoFH but, may cause fatty liver and is very expensive. PCSK9 inhibitors are quite effective in receptor defective HoFH, are safe and are less expensive. Lower treatment targets for lipid lowering in HoFH, in line with those for the general FH population, have been proposed to improve cardiovascular outcomes. HEART UK presents a strategy combining Lp apheresis with pharmacological treatment to achieve these targets in the United Kingdom (UK). Improved provision of Lp apheresis by use of existing infrastructure for extracorporeal treatments such as renal dialysis is promoted. The clinical management of adults and children with HoFH including advice on pregnancy and contraception are addressed. A premise of the HEART UK strategy is that the risk of early use of drug treatments beyond their licensed age restriction may be balanced against risks of liver transplantation or ineffective treatment in severely affected patients. This may be of interest beyond the UK.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Benzimidazóis/uso terapêutico , Remoção de Componentes Sanguíneos/métodos , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , Homozigoto , Hiperlipoproteinemia Tipo II/terapia , Mutação , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Anticolesterolemiantes/efeitos adversos , Benzimidazóis/efeitos adversos , Biomarcadores/sangue , Remoção de Componentes Sanguíneos/efeitos adversos , Doenças Cardiovasculares/genética , Terapia Combinada , Consenso , Predisposição Genética para Doença , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Inibidores de PCSK9 , Fenótipo , Pró-Proteína Convertase 9/metabolismo , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Reino Unido
7.
Proc Natl Acad Sci U S A ; 111(30): E3043-52, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024173

RESUMO

Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat deposition.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Colágeno Tipo XVIII/biossíntese , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo/citologia , Adiposidade/fisiologia , Animais , Colágeno Tipo XVIII/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Ácidos Graxos/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Fibroblastos/citologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Transcrição Gênica/fisiologia
8.
J Biol Chem ; 289(7): 4244-61, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24338480

RESUMO

Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.


Assuntos
Apolipoproteínas B/metabolismo , Colesterol/biossíntese , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Apolipoproteínas B/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular , Colesterol/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Hipobetalipoproteinemias/patologia , Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Transporte Vesicular/genética
9.
J Lipid Res ; 54(12): 3491-505, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103848

RESUMO

The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.


Assuntos
Tecido Adiposo/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Regulação da Expressão Gênica , Hiperlipidemia Familiar Combinada/genética , Células 3T3-L1 , Adipogenia/genética , Tecido Adiposo/patologia , Animais , Ciclo Celular/genética , Células HEK293 , Haplótipos , Humanos , Hiperlipidemia Familiar Combinada/patologia , Masculino , Camundongos , Pessoa de Meia-Idade
10.
Arterioscler Thromb Vasc Biol ; 33(7): 1521-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685560

RESUMO

OBJECTIVE: There are several known monogenic causes of high and low high-density lipoprotein cholesterol (HDL-C) levels, but traditional sequencing studies have had limited success in identifying mutations in the majority of individuals with extreme HDL-C levels. The aim of this study was to assess the power of a targeted high-throughput sequencing strategy to elucidate the genetic basis of extreme HDL-C phenotypes. APPROACH AND RESULTS: We sequenced 195 genes with either established or implicated roles in lipid and lipoprotein metabolism plus 78 lipid-unrelated genes in patients with HDL-C <1st (n=40) or >99th (n=40) percentile values, and the results were compared with those of 498 individuals representative of the Dutch general population and 95 subjects with normal HDL-C (between 40th and 60th percentile values). The extreme HDL cohort carried more rare nonsynonymous variants in the lipid geneset than both the general population (odds ratio, 1.39; P=0.019) and normal HDL-C (odds ratio, 1.43; P=0.040) cohorts. The prevalence of such variants in the lipid-related and lipid-unrelated genesets was similar in the control groups, indicative of equal mutation rates. In the extreme HDL cohort, however, there was enrichment of rare nonsynonymous variants in the lipid versus the control geneset (odds ratio, 2.23; P<0.0001), and 70% of the lipid-related variants altered conserved nucleotides. The lipid geneset comprised 4 nonsense, 10 splice-site, and 8 coding indel variants, whereas the control geneset contained only 1 such variant. In the lipid geneset, 87% and 28% of the patients carried ≥ 2 and ≥ 5 rare variants. CONCLUSIONS: This study suggests that most extreme HDL-C phenotypes have a polygenic origin.


Assuntos
HDL-Colesterol/sangue , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Herança Multifatorial , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Biologia Computacional , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Heterozigoto , Homozigoto , Humanos , Hipercolesterolemia/diagnóstico , Masculino , Países Baixos , Razão de Chances , Fenótipo , Medição de Risco , Fatores de Risco , Análise de Sequência de DNA , Índice de Gravidade de Doença , Regulação para Cima
11.
Genome Res ; 22(6): 1144-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22399572

RESUMO

Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion's phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the ∼4.5-Mb 8p23.1 inversion), a structure that encompasses numerous signals of natural selection and disease association. We developed and validated a flexible bioinformatics tool that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion. This tool was applied retrospectively to diverse genome-wide data sets, revealing significant population stratification that largely follows a clinal "serial founder effect" distribution model. Phylogenetic analyses establish the inversion's ancestral origin within the Homo lineage, indicating that 8p23.1 inversion has occurred independently in the Pan lineage. The human inversion breakpoint was localized to an inverted pair of human endogenous retrovirus elements within the large, flanking low-copy repeats; experimental validation of this breakpoint confirmed these elements as the likely intermediary substrates that sponsored inversion formation. In five data sets, mRNA levels of disease-associated genes were robustly associated with inversion genotype. Moreover, a haplotype associated with systemic lupus erythematosus was restricted to the derived inversion state. We conclude that the 8p23.1 inversion is an evolutionarily dynamic structure that can now be accommodated into the understanding of human genetic and phenotypic diversity.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 8 , Polimorfismo Genético , Animais , Sequência de Bases , Evolução Molecular , Expressão Gênica , Genética Populacional , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lúpus Eritematoso Sistêmico/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Duplicações Segmentares Genômicas
12.
J Lipid Res ; 52(11): 1885-926, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862702

RESUMO

This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.


Assuntos
Doença/genética , Predisposição Genética para Doença , Lipoproteínas LDL/sangue , Esteróis/metabolismo , Absorção , Sequência de Aminoácidos , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Humanos , Dados de Sequência Molecular
14.
J Lipid Res ; 50 Suppl: S370-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19023136

RESUMO

This review summarizes the progress made in cutting through the biological and genetic complexity of the Gordian knot that is familial combined hyperlipidemia. We particularly focus on how the application of new genomic technologies, especially massively parallel sequencing and high-throughput genotyping platforms, promise to accelerate the gene discovery process in this common, highly atherogenic disorder, with important diagnostic and therapeutic implications.


Assuntos
Éxons/genética , Hiperlipidemia Familiar Combinada/diagnóstico , Hiperlipidemia Familiar Combinada/genética , Lipídeos/análise , Lipídeos/genética , Ciência de Laboratório Médico/métodos , Animais , Simulação por Computador , Humanos
16.
Arterioscler Thromb Vasc Biol ; 27(12): 2707-13, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17932310

RESUMO

OBJECTIVE: Previous studies have indicated that the hyperlipidemia and gene expression changes induced by a short-term high-fat diet (HFD) are mediated through the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1beta, and that in vitro both PGC-1beta and PGC -1alpha increase PPARalpha-mediated transcriptional activities. Here, we examined the in vivo effects of these two coactivators in potentiating the lipid lowering properties of the PPARalpha agonist Wy14,643 (Wy). METHODS AND RESULTS: C57BL/6 mice were fed chow or HFD and transduced with adenoviruses encoding PGC-1alpha or PGC-1beta. On chow, hepatic PGC-1beta overexpression caused severe combined hyperlipidemia including elevated plasma apolipoprotein B levels. Hepatic triglyceride secretion, DGAT1, and FAT/CD36 expression were increased whereas PPARalpha and hepatic lipase mRNA levels were reduced. PGC-1beta overexpression blunted Wy-mediated changes in expression levels of PPARalpha and downstream genes. Furthermore, PGC-1beta did not potentiate Wy-stimulated fatty acid oxidation in primary hepatocytes. PGC-1beta and PGC-1alpha overexpression did not alter SREBP-1c, SREBP-1c target gene expression, nor hepatic triglyceride content. On HFD, PGC-1beta overexpression decreased hepatic SREBP-1c, yet increased FAS and ACCalpha mRNA and plasma triglyceride levels. CONCLUSIONS: Hepatic PGC-1beta overexpression caused combined hyperlipidemia independent of SREBP-1c activation. Hepatic PGC-1beta overexpression reduced the potentially beneficial effects of PPARalpha activation on gene expression. Thus, inhibition of hepatic PGC-1beta may provide a therapy for treating combined hyperlipidemia.


Assuntos
Anticolesterolemiantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemia Familiar Combinada/prevenção & controle , Fígado/efeitos dos fármacos , PPAR alfa/agonistas , Pirimidinas/farmacologia , Transativadores/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adenoviridae/genética , Animais , Anticolesterolemiantes/uso terapêutico , Apolipoproteínas B/sangue , Antígenos CD36/metabolismo , Células Cultivadas , Diacilglicerol O-Aciltransferase/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Vetores Genéticos , Hiperlipidemia Familiar Combinada/genética , Hiperlipidemia Familiar Combinada/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Pirimidinas/uso terapêutico , RNA Mensageiro/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transativadores/genética , Fatores de Transcrição , Transdução Genética , Triglicerídeos/metabolismo , Regulação para Cima
17.
Curr Top Med Chem ; 5(3): 283-300, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15857311

RESUMO

The microsomal triglyceride transfer protein (MTP), along with its partner, protein disulphide isomerase, performs a wide range of lipid transport functions necessary for maintenance of whole-body lipid homeostasis. In this review, we summarize the recent deluge of comparative and functional genomic data that have forced a radical re-appraisal of the evolutionary processes that established the major lipid transport pathway in man, and the different structural and lipid transfer roles MTP plays within it. This is followed by an overview of MTP structure-function relationships, highlighting two newly identified functional roles: first, the production of small, apolipoprotein (apo)B-containing lipoprotein particles in cardiac myocytes and, second, the lipidation of a major histocompatibility complex class-I related molecule (CD1d) that presents glycolipid antigens to distinct subsets of natural killer T cells. We also discuss the interactions of MTP with proteins such as apoB and CD1d, and the complex mechanisms regulating MTP transcription in different cell types and nutritional states. The past five years has witnessed remarkable progress in teasing out the different functionalities of MTP, and the properties of the different molecules that inhibit MTP activity, data that are likely to underpin the design of the next generation of MTP/apoB inhibitors for preventing cardiovascular disease attributable to the increased production of atherogenic lipoproteins.


Assuntos
Apolipoproteínas B/farmacologia , Proteínas de Transporte/metabolismo , Homeostase/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/efeitos dos fármacos , Glicolipídeos/sangue , Glicolipídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Células Matadoras Naturais/imunologia , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/imunologia
18.
Trends Mol Med ; 10(8): 362-5, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15310455

RESUMO

The upstream stimulatory factor (USF) proteins are ubiquitously expressed and, as such, represent unusual candidates for involvement in disorders of carbohydrate and lipid metabolism. Nonetheless, a recent study has reported an association between specific alleles of USF1 and familial combined hyperlipidaemia, a common disorder that substantially increases the risk of premature atherosclerotic cardiovascular disease. USF1 might, therefore, also contribute to the metabolic syndrome. The use of chromatin immunoprecipitation methodologies combined with promoter microarray assays will help to define the transcriptional networks that underlie whole-body glucose and lipid homeostasis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Hiperlipidemia Familiar Combinada/etiologia , Síndrome Metabólica/etiologia , Fatores de Transcrição/fisiologia , Feminino , Humanos , Hiperlipidemia Familiar Combinada/metabolismo , Zíper de Leucina , Metabolismo dos Lipídeos , Masculino , Síndrome Metabólica/metabolismo , Linhagem , Fatores Estimuladores Upstream
20.
J Hepatol ; 40(4): 599-606, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15030975

RESUMO

BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and activities of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) are similar in Apoe(-/-) and wild type mice. In addition, apoB synthesis was not decreased in Apoe(-/-) cells. Thus, the accumulation of lipid in these cells is not attributable to perturbed TG turnover, apoB synthesis, and the activities of DGAT and MTP. Inhibition of MTP had a more profound impact on the secretion of VLDL-TG from wild type hepatocytes than Apoe(-/-) hepatocytes, indicating that MTP was more limiting for the production of VLDL-TG from wild type cells. In marked contrast to the MTP-deficient model of fatty liver, electron microscopy of lipid-stained liver sections of Apoe(-/-) mice revealed an accumulation of lipid in numerous small, putative ER-derived vesicles and in the cytosol. No abnormalities were observed in the Golgi of Apoe(-/-) mice. CONCLUSIONS: These results suggest that the removal of lipids from the early or intermediary compartments of the secretory pathway of hepatocytes is impaired in Apoe(-/-) mice.


Assuntos
Apolipoproteínas E/deficiência , Hepatócitos/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteínas E/genética , Transporte Biológico Ativo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Hepatócitos/ultraestrutura , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...