Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 2234-2255, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38537616

RESUMO

The hydrophobic cuticle is the first line of defense between aerial portions of plants and the external environment. On maize (Zea mays L.) silks, the cuticular cutin matrix is infused with cuticular waxes, consisting of a homologous series of very long-chain fatty acids (VLCFAs), aldehydes, and hydrocarbons. Together with VLC fatty-acyl-CoAs (VLCFA-CoAs), these metabolites serve as precursors, intermediates, and end-products of the cuticular wax biosynthetic pathway. To deconvolute the potentially confounding impacts of the change in silk microenvironment and silk development on this pathway, we profiled cuticular waxes on the silks of the inbreds B73 and Mo17, and their reciprocal hybrids. Multivariate interrogation of these metabolite abundance data demonstrates that VLCFA-CoAs and total free VLCFAs are positively correlated with the cuticular wax metabolome, and this metabolome is primarily affected by changes in the silk microenvironment and plant genotype. Moreover, the genotype effect on the pathway explains the increased accumulation of cuticular hydrocarbons with a concomitant reduction in cuticular VLCFA accumulation on B73 silks, suggesting that the conversion of VLCFA-CoAs to hydrocarbons is more effective in B73 than Mo17. Statistical modeling of the ratios between cuticular hydrocarbons and cuticular VLCFAs reveals a significant role of precursor chain length in determining this ratio. This study establishes the complexity of the product-precursor relationships within the silk cuticular wax-producing network by dissecting both the impact of genotype and the allocation of VLCFA-CoA precursors to different biological processes and demonstrates that longer chain VLCFA-CoAs are preferentially utilized for hydrocarbon biosynthesis.


Assuntos
Ácidos Graxos , Hidrocarbonetos , Ceras , Zea mays , Zea mays/metabolismo , Zea mays/genética , Ceras/metabolismo , Hidrocarbonetos/metabolismo , Ácidos Graxos/metabolismo , Genótipo , Metaboloma , Epiderme Vegetal/metabolismo , Vias Biossintéticas
2.
PLoS One ; 18(12): e0291845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039265

RESUMO

INTRODUCTION: This study examined the effects of acute resistance exercise on circulating endocannabinoid (eCB) and mood responses in trained and untrained healthy adults. METHODS: Thirty-two healthy adults (22.1 ± 2.9 years) were recruited from trained (reporting resistance exercise at least twice per week for ≥ previous three months) and untrained (performing no resistance exercise for ≥ previous three months) groups. Participants (13 male, 19 female) completed three sets of resistance exercise (16 repetitions at 50% 1-repetition max, 12 repetitions at 70% 1-repetition max, 8 repetitions at 80% 1-repetition max). Resistance machines targeted the legs, chest, back, and abdominal muscles. Mood states, affect, and circulating eCB concentrations were evaluated before and after resistance exercise. RESULTS: There were significant decreases in AEA, PEA, and OEA levels following acute resistance exercise (p <0.05; ds = -0.39, -0.48, -0.65, respectively), with no significant group differences or group by time interactions. 2-AG did not change significantly. Positive affect increased significantly following resistance exercise (p = 0.009), while negative affect decreased (p <0.001). Depressive symptoms, anger, confusion, and total mood disturbance decreased significantly (p <0.05), while vigor increased significantly following resistance exercise (p = 0.005). There were no significant group differences or group by time interactions for any psychological outcomes. CONCLUSION: These results indicate that acute resistance exercise may reduce eCB and related lipid concentrations, which is opposite to the increase in lipids typically observed with acute aerobic exercise. Furthermore, psychological improvements occur after resistance exercise regardless of decreases in eCBs, supporting the notion that psychological changes with exercise likely occur through a wide variety of biological and environmental mechanisms.


Assuntos
Endocanabinoides , Treinamento Resistido , Humanos , Masculino , Adulto , Feminino , Afeto/fisiologia , Exercício Físico/fisiologia , Ira
3.
Front Plant Sci ; 12: 732216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804084

RESUMO

Sterols are integral components of membrane lipid bilayers in eukaryotic organisms and serve as precursors to steroid hormones in vertebrates and brassinosteroids (BR) in plants. In vertebrates, cholesterol is the terminal sterol serving both indirect and direct roles in cell signaling. Plants synthesize a mixture of sterols including cholesterol, sitosterol, campesterol, and stigmasterol but the signaling role for the free forms of individual plant sterols is unclear. Since stigmasterol is the terminal sterol in the sitosterol branch and produced from a single enzymatic step, modifying stigmasterol concentration may shed light on its role in plant metabolism. Although Arabidopsis has been the model of choice to study sterol function, the functional redundancy of AtCYP710A genes and the presence of brassicasterol may hinder our ability to test the biological function of stigmasterol. We report here the identification and characterization of ZmCYP710A8, the sole maize C-22 sterol desaturase involved in stigmasterol biosynthesis and the identification of a stigmasterol-free Zmcyp710a8 mutant. ZmCYP710A8 mRNA expression pattern correlated with transcripts for several sterol biosynthesis genes and loss of stigmasterol impacted sterol composition. Exogenous stigmasterol also had a stimulatory effect on mRNA for ZmHMGR and ZmSMT2. This demonstrates the potential of Zmcyp710a8 in understanding the role of stigmasterol in modulating sterol biosynthesis and global cellular metabolism. Several amino acids accumulate in the Zmcyp710a8 mutant, offering opportunity for genetic enhancement of nutritional quality of maize. Other cellular metabolites in roots and shoots of maize and Arabidopsis were also impacted by genetic modification of stigmasterol content. Yet lack of obvious developmental defects in Zmcyp710a8 suggest that stigmasterol might not be essential for plant growth under normal conditions. Nonetheless, the Zmcyp710a8 mutant reported here is of great utility to advance our understanding of the additional roles of stigmasterol in plant metabolism. A number of biological and agronomic questions can be interrogated using this tool such as gene expression studies, spatio-temporal localization of sterols, cellular metabolism, pathway regulation, physiological studies, and crop improvement.

4.
Plant Methods ; 14: 117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30603042

RESUMO

BACKGROUND: Cutin is a complex, highly cross-linked polyester consisting of hydroxylated and epoxidated acyl lipid monomers. Because of the complexity of the polymer it has been difficult to define the chemical architecture of the polymer, which has further limited the ability to identify the catalytic components that assemble the polymer. Analogous to methods that define the structure of oligosaccharides, we demonstrate a strategy that utilizes cutinase to generate cutin subfragments consisting of up to four monomeric units, whose structure and spatial distribution in the polymer is revealed by high-resolution mass spectrometry. Moreover, the application of mass-spectrometric fragmentation and labelling of the end of the oligomers, one is able to define the order of monomers in the oligomer. The systematic application of this strategy can greatly facilitate understanding the chemical architecture of this complex polymer. RESULTS: The chemical architecture of plant cutin is dissected by coupling an enzymatic system that deconstructs the polymer into subfragments consisting of dimers, trimers and tetramers of cutin monomers, with group-specific labeling and mass spectrometry. These subfragments can be generated with one of over 1200 of cutinases identified from diverse biological sources. The parallel chemical labeling of the polymer with dansyl, alkyl or p-dimethylaminophenacyl reagents can identify the chemical distribution of non-esterified hydroxyl- and carboxyl-groups among the monomers. This combined strategy is applied to cutin isolated from with apple fruit skins, and a combination of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-quadrupole time-of-flight (Q-TOF) MS is used to determine the order of the monomers in the cutinase-generated subfragments. Finally, we demonstrate the use of matrix-assisted laser desorption-ionization-MS to determine the spatial distribution of the cutinase-generated subfragments. CONCLUSION: Our experimental results demonstrate an advancement to overcome the current limitations in identifying cutin oligomeric structure and allows one to more efficiently address new biological questions about cutin biosynthesis. We submit that the systematic application of these methods will enable the construction of more accurate architectural models of cutin, which is a prerequisite to identifying cutin-biosynthetic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...