Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673084

RESUMO

Multifunctional nanocomposites from an equimolar As4S4/Fe3O4 cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer 407 acting as a surfactant). As was inferred from the X-ray diffraction analysis, these surfactant-free and surfactant-capped nanocomposites are ß-As4S4-bearing nanocrystalline-amorphous substances supplemented by an iso-compositional amorphous phase (a-AsS), both principal constituents (monoclinic ß-As4S4 and cubic Fe3O4) being core-shell structured and enriched after wet milling by contamination products (such as nanocrystalline-amorphous zirconia), suppressing their nanocrystalline behavior. The fluorescence and magnetic properties of these nanocomposites are intricate, being tuned by the sizes of the nanoparticles and their interfaces, dependent on storage after nanocomposite fabrication. A specific core-shell arrangement consisted of inner and outer shell interfaces around quantum-confined nm-sized ß-As4S4 crystallites hosting a-AsS, and the capping agent is responsible for the blue-cyan fluorescence in as-fabricated Poloxamer capped nanocomposites peaking at ~417 nm and ~442 nm, while fluorescence quenching in one-year-aged nanocomposites is explained in terms of their destroyed core-shell architectures. The magnetic co-functionalization of these nanocomposites is defined by size-extended heterogeneous shells around homogeneous nanocrystalline Fe3O4 cores, composed by an admixture of amorphous phase (a-AsS), nanocrystalline-amorphous zirconia as products of contamination in the wet-milling mode, and surfactant.

2.
Sci Rep ; 13(1): 2881, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801904

RESUMO

Phase-change materials, demonstrating a rapid switching between two distinct states with a sharp contrast in electrical, optical or magnetic properties, are vital for modern photonic and electronic devices. To date, this effect is observed in chalcogenide compounds based on Se, Te or both, and most recently in stoichiometric Sb2S3 composition. Yet, to achieve best integrability into modern photonics and electronics, the mixed S/Se/Te phase change medium is needed, which would allow a wide tuning range for such important physical properties as vitreous phase stability, radiation and photo-sensitivity, optical gap, electrical and thermal conductivity, non-linear optical effects, as well as the possibility of structural modification at nanoscale. In this work, a thermally-induced high-to-low resistivity switching below 200 °C is demonstrated in Sb-rich equichalcogenides (containing S, Se and Te in equal proportions). The nanoscale mechanism is associated with interchange between tetrahedral and octahedral coordination of Ge and Sb atoms, substitution of Te in the nearest Ge environment by S or Se, and Sb-Ge/Sb bonds formation upon further annealing. The material can be integrated into chalcogenide-based multifunctional platforms, neuromorphic computational systems, photonic devices and sensors.

4.
ACS Appl Mater Interfaces ; 14(28): 32206-32217, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786831

RESUMO

Tungsten bronze is an effective near-infrared (NIR) shielding material for fabricating energy-saving smart windows. While high-performing NIR-shielding glasses can be fabricated by coating a tungsten bronze film on window glasses, these glasses suffer a short lifespan due to the adhesion and degeneration of film. In this work, we show that tungsten bronze-like material Na5W14O44 can be distributed in the bulk glass matrix during the facile melt-quenching glass fabrication process under an air atmosphere, overcoming the limitations of film-based glasses. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of tungsten bronze-like Na5W14O44 functional units in the SiO2-B2O3-NaF glass matrix. The addition of a small amount of H2WO4 and Sb2O3 is critical for the formation of Na5W14O44 functional units because H2WO4 provides W for Na5W14O44, and Sb2O3 acts as a reducing agent that helps the formation of W5+ in Na5W14O44 under an air atmosphere. Furthermore, the NIR-shielding ability can be tuned by adjusting the concentration of Sb2O3 in the range of 0-1.5 mol % and of H2WO4 in the range of 4-6 mol %. The optimized composition containing 1.25 mol % of Sb2O3 and 5 mol % of H2WO4 exhibits excellent NIR-shielding ability (ΔT = 62.8%), high visible light transmittance (Tmax = 67.7%), and excellent thermal insulation. This performance is comparable to cesium tungsten bronze film-based glasses and much better than soda lime glass and ITO glass under sun irradiation. This study sheds light on fabricating energy-saving windows in a simple and cost-effective way with flexibility for fine tuning of NIR-shielding performance.

5.
Materials (Basel) ; 15(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744107

RESUMO

The effect of a weak magnetic field (B = 0.17 T) and X-irradiation (D < 520 Gy) on the rearrangement of the defective structure of near-surface p-type silicon layers was studied. It was established that the effect of these external fields increases the positive accumulated charge in the region of spatial charge (RSC) and in the SiO2 dielectric layer. This can be caused by both defects in the near-surface layer of the semiconductor and impurities contained in the dielectric layer, which can generate charge carriers. It was found that the near-surface layers of the barrier structures contain only one deep level in the silicon band gap, with an activation energy of Ev + 0.38 eV. This energy level corresponds to a complex of silicon interstitial atoms SiI+SiI. When X-irradiated with a dose of 520 Gy, a new level with the energy of Ev + 0.45 eV was observed. This level corresponds to a point boron radiation defect in the interstitial site (BI). These two types of defect are effective in obtaining charge carriers, and cause deterioration of the rectifier properties of the silicon barrier structures. It was established that the silicon surface is quite active, and adsorbs organic atoms and molecules from the atmosphere, forming bonds. It was shown that the effect of a magnetic field causes the decay of adsorbed complexes at the Si−SiO2 interface. The released hydrogen is captured by acceptor levels and, as a result, the concentration of more complex Si−H3 complexes increases that of O3−Si−H.

6.
Measurement (Lond) ; 196: 111258, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35493849

RESUMO

In this research, blood samples of 47 patients infected by COVID were analyzed. The samples were taken on the 1st, 3rd and 6th month after the detection of COVID infection. Total antibody levels were measured against the SARS-CoV-2 N antigen and surrogate virus neutralization by serological methods. To differentiate COVID patients with different antibody levels, Fourier Transform InfraRed (FTIR) and Raman spectroscopy methods were used. The spectroscopy data were analyzed by multivariate analysis, machine learning and neural network methods. It was shown, that analysis of serum using the above-mentioned spectroscopy methods allows to differentiate antibody levels between 1 and 6 months via spectral biomarkers of amides II and I. Moreover, multivariate analysis showed, that using Raman spectroscopy in the range between 1317 cm-1 and 1432 cm-1, 2840 cm-1 and 2956 cm-1 it is possible to distinguish patients after 1, 3, and 6 months from COVID with a sensitivity close to 100%.

7.
Front Chem ; 10: 836795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242741

RESUMO

The biocompatible nanosuspension of CuS nanoparticles (NPs) using bovine serum albumin (BSA) as a capping agent was prepared using a two-stage mechanochemical approach. CuS NPs were firstly synthetized by a high-energy planetary ball milling in 15 min by milling elemental precursors. The stability of nanoparticles in the simulated body fluids was studied, revealing zero copper concentration in the leachates, except simulated lung fluid (SLF, 0.015%) and simulated gastric fluid (SGF, 0.078%). Albumin sorption on CuS NPs was studied in static and dynamic modes showing a higher kinetic rate for the dynamic mode. The equilibrium state of adsorption was reached after 90 min with an adsorption capacity of 86 mg/g compared to the static mode when the capacity 59 mg/g was reached after 2 h. Then, a wet stirred media milling in a solution of BSA was introduced to yield the CuS-BSA nanosuspension, being stable for more than 10 months, as confirmed by photon cross-correlation spectroscopy. The fluorescent properties of the nanosuspension were confirmed by photoluminescence spectroscopy, which also showed that tryptophan present in the BSA could be closer to the binding site of CuS than the tyrosine residue. The biological activity was determined by in vitro tests on selected cancer and non-tumor cell lines. The results have shown that the CuS-BSA nanosuspension inhibits the metabolic activity of the cells as well as decreases their viability upon photothermal ablation.

8.
Materials (Basel) ; 15(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35009450

RESUMO

The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100-x (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron-electron (Ps, positronium) states. Positron trapping in g-AsxSe100-x/PVP nanocomposites was modified by an enriched population of Ps-decay sites in PVP. This was proven within a three-state STM, assuming two additive inputs in an overall trapping arising from distinct positron and Ps-related states. Formalism of x3-x2-CDA (coupling decomposition algorithm), describing the conversion of Ps-decay sites into positron traps, was applied to identify volumetric nanostructurization in wet-milled g-As-Se, with respect to dry-milled ones. Under wet nanomilling, the Ps-decay sites stabilized in inter-particle triple junctions filled with PVP replaced positron traps in dry-milled substances, the latter corresponding to multi-atomic vacancies in mostly negative environments of Se atoms. With increased Se content, these traps were agglomerated due to an abundant amount of Se-Se bonds. Three-component lifetime spectra with nanostructurally- and compositionally-tuned Ps-decay inputs and average lifetimes serve as a basis to correctly understand the specific "rainbow" effects observed in the row from pelletized PVP to wet-milled, dry-milled, and unmilled samples.

9.
Materials (Basel) ; 14(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443000

RESUMO

The impact of high-energy milling on glassy arsenic monoselenide g-AsSe is studied with X-ray diffraction applied to diffuse peak-halos proper to intermediate- and extended-range ordering revealed in first and second sharp diffraction peaks (FSDP and SSDP). A straightforward interpretation of this effect is developed within the modified microcrystalline approach, treating "amorphous" halos as a superposition of the broadened Bragg diffraction reflexes from remnants of some inter-planar correlations, supplemented by the Ehrenfest diffraction reflexes from most prominent inter-molecular and inter-atomic correlations belonging to these quasi-crystalline remnants. Under nanomilling, the cage-like As4Se4 molecules are merely destroyed in g-AsSe, facilitating a more polymerized chain-like network. The effect of nanomilling-driven molecular-to-network reamorphization results in a fragmentation impact on the correlation length of FSDP-responsible entities (due to an increase in the FSDP width and position). A breakdown in intermediate-range ordering is accompanied by changes in extended-range ordering due to the high-angular shift and broadening of the SSDP. A breakdown in the intermediate-range order is revealed in the destruction of most distant inter-atomic correlations, which belong to remnants of some quasi-crystalline planes, whereas the longer correlations dominate in the extended-range order. The microstructure scenarios of milling-driven reamorphization originated from the As4Se4 molecule, and its network derivatives are identified with an ab initio quantum-chemical cluster modeling code (CINCA).

10.
Nanoscale Res Lett ; 12(1): 256, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28384998

RESUMO

In this study, we demonstrate a one-pot mechanochemical synthesis of the nanocomposite composed of stannite Cu2FeSnS4 and rhodostannite Cu2FeSn3S8 nanocrystals using a planetary ball mill and elemental precursors (Cu, Fe, Sn, S). By this approach, unique nanostructures with interesting properties can be obtained. Methods of XRD, Raman spectroscopy, UV-Vis, nitrogen adsorption, SEM, EDX, HRTEM, STEM, and SQUID magnetometry were applied. Quaternary tetragonal phases of stannite and rhodostannite with crystallite sizes 18-19 nm were obtained. The dominant Raman peaks corresponding to the tetragonal stannite structure corresponding to A-symmetry optical modes were identified in the spectra. The bandgap 1.25 eV calculated from UV-Vis absorption spectrum is very well-acceptable value for the application of the synthesized material. The SEM micrographs illustrate the clusters of particles in micron and submicron range. The formation of agglomerates is also illustrated on the TEM micrographs. Weak ferromagnetic properties of the synthesized nanocrystals were documented.

11.
Nanoscale Res Lett ; 12(1): 191, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28314358

RESUMO

Subsequent stages of atomic-deficient nanostructurization finalizing rare-earth functionality under Pr3+-doping in Ga2(As0.28Sb0.12Se0.60)98 glass are studied employing method of positron annihilation lifetime spectroscopy. Genesis of free-volume positron trapping sites, composed of atomic-accessible geometrical holes (void cores) arrested by surrounding atomic-inaccessible Se-based bond-free solid angles (void shells), are disclosed for parent As2Se3, Ga-codoped Ga2(As0.40Se0.60)98, as well as Ga-codoped and Sb-modified Ga2(As0.28Sb0.12Se0.60)98 glasses. The finalizing nanostructurization due to Pr3+-doping (500 wppm) in glassy Ga2(As0.28Sb0.12Se0.60)98 is explained in terms of competitive contribution of changed occupancy sites available for both rare-earth ions and positrons.

12.
Nanoscale Res Lett ; 12(1): 83, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28144916

RESUMO

Within this study, a stable nanosuspension of silver nanoparticles (Ag NPs) was prepared using a two-step synthesis and stabilization approach. The Ag NPs were synthesized from a silver nitrate solution using the Origanum vulgare L. plant extract as the reducing agent. The formation of nanoparticles was finished upon 15 min, and subsequently, stabilization by polyvinylpyrrolidone (PVP) using wet stirred media milling was applied. UV-Vis spectra have shown a maximum at 445 nm, corresponding to the formation of spherical Ag NPs. Infrared spectroscopy was used to examine the interaction between Ag NPs and the capping agents. TEM study has shown the formation of Ag NPs with two different average sizes (38 ± 10 nm and 7 ± 3 nm) after the plant-mediated synthesis, both randomly distributed within the organic matrix. During milling in PVP, the clusters of Ag NPs were destroyed, the Ag NPs were fractionized and embedded in PVP. The nanosuspensions of PVP-capped Ag NPs were stable for more than 26 weeks, whereas for the non-stabilized nanosuspensions, only short-term stability for about 1 week was documented.

13.
Nanoscale Res Lett ; 11(1): 10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26754936

RESUMO

Structural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as ß-As4S4. In respect to X-ray diffraction analysis, the characteristic sizes of ß-As4S4 crystallites in these coarse- and fine-grained powdered pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize transformations occurred in free-volume structure of these nanoarsenicals. Experimentally measured positron lifetime spectra were parameterized in respect to three- or two-term fitting procedures and respectively compared with those accumulated for single crystalline realgar α-As4S4 polymorph. The effect of coarse-grained powdering was found to result in generation of large amount of positron and positronium Ps trapping sites inside arsenicals in addition to existing ones. In fine-grained powdered ß-As4S4 pellets, the positron trapping sites with characteristic free volumes close to bi- and tri-atomic vacancies were evidently dominated. These defects were supposed to originate from grain boundary regions and interfacial free volumes near aggregated ß-As4S4 crystallites. Thus, the cumulative production of different positron traps with lifetimes close to defect-related lifetimes in realgar α-As4S4 polymorph was detected in fine-grained milled samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...