Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7600, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217175

RESUMO

Entangled photon-pair sources are at the core of quantum applications like quantum key distribution, sensing, and imaging. Operation in space-limited and adverse environments such as in satellite-based and mobile communication requires robust entanglement sources with minimal size and weight requirements. Here, we meet this challenge by realizing a cubic micrometer scale entangled photon-pair source in a 3R-stacked transition metal dichalcogenide crystal. Its crystal symmetry enables the generation of polarization-entangled Bell states without additional components and provides tunability by simple control of the pump polarization. Remarkably, generation rate and state tuning are decoupled, leading to equal generation efficiency and no loss of entanglement. Combining transition metal dichalcogenides with monolithic cavities and integrated photonic circuitry or using quasi-phasematching opens the gate towards ultrasmall and scalable quantum devices.

2.
Small Methods ; 6(9): e2200300, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35957515

RESUMO

A simple, large area, and cost-effective soft lithographic method is presented for the patterned growth of high-quality 2D transition metal dichalcogenides (TMDs). Initially, a liquid precursor (Na2 MoO4 in an aqueous solution) is patterned on the growth substrate using the micromolding in capillaries technique. Subsequently, a chemical vapor deposition step is employed to convert the precursor patterns to monolayer, few layers, or bulk TMDs, depending on the precursor concentration. The grown patterns are characterized using optical microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and photoluminescence spectroscopy to reveal their morphological, chemical, and optical characteristics. Additionally, electronic and optoelectronic devices are realized using the patterned TMDs and tested for their applicability in field effect transistors and photodetectors. The photodetectors made of MoS2 line patterns show a very high responsivity of 7674 A W-1 and external quantum efficiency of 1.49 × 106 %. Furthermore, the multiple grain boundaries present in patterned TMDs enable the fabrication of memtransistor devices. The patterning technique presented here may be applied to many other TMDs and related heterostructures, potentially advancing the fabrication of TMDs-based device arrays.

3.
Nanoscale ; 13(2): 1248-1256, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404576

RESUMO

In the bilayer ReS2 channel of a field-effect transistor (FET), we demonstrate using Raman spectroscopy that electron doping (n) results in softening of frequency and broadening of linewidth for the in-plane vibrational modes, leaving the out-of-plane vibrational modes unaffected. The largest change is observed for the in-plane Raman mode at ∼151 cm-1, which also shows doping induced Fano resonance with the Fano parameter 1/q = -0.17 at a doping concentration of ∼3.7 × 1013 cm-2. A quantitative understanding of our results is provided by first-principles density functional theory (DFT), showing that the electron-phonon coupling (EPC) of in-plane modes is stronger than that of out-of-plane modes, and its variation with doping is independent of the layer stacking. The origin of large EPC is traced to 1T to 1T' structural phase transition of ReS2 involving in-plane displacement of atoms whose instability is driven by the nested Fermi surface of the 1T structure. Results are compared with those of the isostructural trilayer ReSe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA