Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109232, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425843

RESUMO

"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide. There is an urgent need to develop new strategies to control them. In this study, we characterized a dual-specificity serine/tyrosine phosphatase (STP) that is well conserved among thirty-three geographically diverse "Candidatus Liberibacter spp." and strains that infect multiple Solanaceaea and citrus spp. The STP is expressed in infected plant tissues, localized at the plant cytosol and plasma membrane, and interferes with plant cell death responses. We employed an in silico target-based molecular modeling and ligand screen to identify two small molecules with high binding affinity to STP. Efficacy studies demonstrated that the two molecules can inhibit "Candidatus Liberibacter spp." but not unrelated pathogens and confer plant disease tolerance. The inhibitors and strategies are promising means to control "Candidatus Liberibacter spp."

2.
New Phytol ; 240(1): 382-398, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532924

RESUMO

Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.


Assuntos
MicroRNAs , Micorrizas , Nicotiana/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatos/metabolismo
3.
Plant Physiol ; 193(1): 689-707, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37144828

RESUMO

Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.


Assuntos
Arabidopsis , Citrus , Rutaceae , Citrus/metabolismo , Rutaceae/metabolismo , Flagelina/genética , Flagelina/metabolismo , Arabidopsis/genética , Quitina/metabolismo , Receptores Imunológicos/metabolismo , Percepção , Doenças das Plantas/microbiologia
4.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952362

RESUMO

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/fisiologia , Hemípteros/microbiologia , Liberibacter , Doenças das Plantas/microbiologia
5.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 90-100, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34890039

RESUMO

OBJECTIVE: The aim of the study was to show the effect that two naturally occurring compounds, a cyclodextrin and hydroxytyrosol, can have on the entry of SARS-CoV-2 into human cells. MATERIALS AND METHODS: The PubMed database was searched to retrieve studies published from 2000 to 2020, satisfying the inclusion criteria. The search keywords were: SARS-CoV, SARS-CoV-2, coronavirus, lipid raft, endocytosis, hydroxytyrosol, cyclodextrin. Modeling of alpha-cyclodextrin and hydroxytyrosol were done using UCSF Chimera 1.14. RESULTS: The search results indicated that cyclodextrins can reduce the efficiency of viral endocytosis and that hydroxytyrosol has antiviral properties. Bioinformatic docking studies showed that alpha-cyclodextrin and hydroxytyrosol, alone or in combination, interact with the viral spike protein and its host cell receptor ACE2, thereby potentially influencing the endocytosis process. CONCLUSIONS: Hydroxytyrosol and alpha-cyclodextrin can be useful against the spread of SARS-CoV-2.


Assuntos
Álcool Feniletílico/análogos & derivados , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , alfa-Ciclodextrinas/farmacologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Biologia Computacional/métodos , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Simulação de Acoplamento Molecular , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/metabolismo , alfa-Ciclodextrinas/uso terapêutico
6.
Plant Direct ; 5(10): e350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622121

RESUMO

miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.

7.
J Hazard Mater ; 404(Pt A): 124155, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049626

RESUMO

In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.


Assuntos
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Ácidos Pipecólicos , Sementes
8.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883801

RESUMO

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Plant Physiol ; 184(2): 1128-1152, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723807

RESUMO

Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.


Assuntos
Proteínas Argonautas/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia , Oxilipinas/metabolismo , Proteínas Argonautas/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sudoeste dos Estados Unidos
10.
Mol Plant Pathol ; 21(5): 716-731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108417

RESUMO

'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management.


Assuntos
Citrus/microbiologia , Estudo de Associação Genômica Ampla/métodos , Doenças das Plantas/microbiologia , Filogenia , Rhizobiaceae
12.
Phytopathology ; 110(3): 556-566, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31799900

RESUMO

Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.


Assuntos
Micrococcaceae , Solanum lycopersicum , Actinobacteria , Clavibacter , Genômica , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas
13.
Annu Rev Phytopathol ; 57: 341-365, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31283433

RESUMO

Gram-positive bacteria are prominent members of plant-associated microbial communities. Although many are hypothesized to be beneficial, some are causative agents of economically important diseases of crop plants. Because the features of Gram-positive bacteria are fundamentally different relative to those of Gram-negative bacteria, the evolution and ecology as well as the mechanisms used to colonize and infect plants also differ. Here, we discuss recent advances in our understanding of Gram-positive, plant-associated bacteria and provide a framework for future research directions on these important plant symbionts.


Assuntos
Infecções , Simbiose , Ecologia , Bactérias Gram-Positivas , Humanos , Plantas
14.
Phytopathology ; 109(11): 1849-1858, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31334679

RESUMO

Clavibacter michiganensis is the causal agent of bacterial canker of tomato, which causes significant economic losses because of the lack of resistant tomato varieties. Chemical control with streptomycin or cupric bactericides is the last defensive line in canker disease management. Streptomycin is an aminoglycoside antibiotic that inhibits protein synthesis and targets the 30S ribosomal protein RpsL. Streptomycin has been used to control multiple plant bacterial diseases. However, identification and characterization of streptomycin resistance in C. michiganensis have remained unexplored. In this study, a naturally occurring C. michiganensis strain TX-0702 exhibiting spontaneous streptomycin resistance was identified, with a minimum inhibitory concentration of 128 µg/ml. Additionally, an induced streptomycin-resistant strain BT-0505-R was generated by experimental evolution of the sensitive C. michiganensis strain BT-0505. Genome sequencing and functional analyses were used to identify the genes conferring resistance. A point mutation at the 128th nucleotide in the rpsL gene of strain BT-0505-R is responsible for conferring streptomycin resistance. However, in TX-0702, resistance is not attributed to mutation of rpsL, streptomycin inactivation enzymes, or multidrug efflux pumps. The mechanism of resistance in TX-0702 is independent of previously reported bacterial loci. Taken together, these data highlight diverse mechanisms used by a Gram-positive plant pathogenic bacterium to confer antibiotic resistance.


Assuntos
Micrococcaceae , Solanum lycopersicum , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Variação Genética , Micrococcaceae/efeitos dos fármacos , Micrococcaceae/genética , Proteínas Ribossômicas/genética , Estreptomicina/farmacologia
15.
Sci Rep ; 9(1): 4054, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858512

RESUMO

A halotolerant rhizobacteria, Klebsiella species (referred to MBE02), was identified that had a growth stimulation effect on peanut. To gain mechanistic insights into how molecular components were reprogrammed during the interaction of MBE02 and peanut roots, we performed deep RNA-sequencing. In total, 1260 genes were differentially expressed: 979 genes were up-regulated, whereas 281 were down-regulated by MBE02 treatment as compared to uninoculated controls. A large component of the differentially regulated genes were related to phytohormone signalling. This included activation of a significant proportion of genes involved in jasmonic acid, ethylene and pathogen-defense signalling, which indicated a role of MBE02 in modulating plant immunity. In vivo and in vitro pathogenesis assays demonstrated that MBE02 treatment indeed provide fitness benefits to peanut against Aspergillus infection under controlled as well as field environment. Further, MBE02 directly reduced the growth of a wide range of fungal pathogens including Aspergillus. We also identified possible molecular components involved in rhizobacteria-mediated plant protection. Our results show the potential of MBE02 as a biocontrol agent in preventing infection against several fungal phytopathogens.


Assuntos
Resistência à Doença/genética , Klebsiella/genética , Micoses/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arachis/microbiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Fungos/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Micoses/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA-Seq , Transdução de Sinais/genética
16.
Methods Mol Biol ; 1932: 99-107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701494

RESUMO

microRNAs (miRNAs) are the central component of an important layer of regulation of gene expression at posttranscriptional level. In plants, miRNAs target the transcripts in a highly complementary sequence-dependent manner. Extensive research is being made to study genome-wide miRNA-mediated regulation of gene expression, which has resulted in the development of many tools for in silico prediction of miRNA targets. Although several tools have been developed for predicting miRNA targets in model plants, genome-wide analysis of miRNA targets is still a challenge for non-model species that lack dedicated tools. Here, we describe an in silico procedure for studying miRNA-mediated interactions in plants, which is based on the fact that canonical miRNA-target sites are highly complementary, the miRNAs negatively regulate the expression of their target genes, and miRNAs may form regulatory networks as one miRNA may target more than one transcript and vice versa to modulate and fine-tune expression of the genome.


Assuntos
MicroRNAs/genética , Plantas/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Análise de Sequência de RNA/métodos
17.
Plant Physiol Biochem ; 136: 143-154, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30684843

RESUMO

Water stress severely reduces the production of wheat. Application of seaweed extracts have started to show promise in protecting plants from environmental stresses as they contain several biostimulants. However, the modes of action of these biostimulants are not clear. Here, we investigated the role of Gracilaria dura (GD), a red alga, in conferring stress tolerance to wheat during drought under glasshouse and agro-ecological conditions by integrating molecular studies with physiological and field investigations. GD-sap application conferred drought tolerance (as the biomass increased by up to 57% and crop yield by 70%), via facilitating physiological changes associated to maintaining higher water content. GD-sap application significantly increased ABA accumulation (2.34 and 1.46 fold at 4 and 6 days of drought, respectively) due to enhanced expression of biosynthesis genes. This followed an activation of ABA response genes and physiological processes including reduced stomatal opening, thus reducing water loss. Moreover, GD-sap application enhanced the expression of stress-protective genes specifically under water stress. Treatment with fluridone, an ABA inhibitor, further support the role of ABA in GD-sap mediated drought tolerance in wheat. The findings of this study provide insights into the functional role of GD-sap in improving drought tolerance and show the potential to commercialize GD-sap as a potent biostimulant for sustainable agriculture in regions prone to drought.


Assuntos
Ácido Abscísico/metabolismo , Gracilaria/metabolismo , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Triticum/efeitos dos fármacos , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Triticum/metabolismo , Triticum/fisiologia
18.
BMC Genomics ; 19(1): 937, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558527

RESUMO

BACKGROUND: Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. RESULTS: Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). CONCLUSIONS: Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation.


Assuntos
MicroRNAs/metabolismo , Micorrizas/fisiologia , Nicotiana/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Genótipo , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Nicotiana/metabolismo , Nicotiana/microbiologia , Transcriptoma
19.
Front Plant Sci ; 9: 636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868089

RESUMO

Spot blotch, caused by the hemibiotropic fungus Bipolaris sorokiniana, is amongst the most damaging diseases of wheat. Still, natural variation in expression of biochemical traits that determine field resistance to spot blotch in wheat remain unaddressed. To understand how genotypic variations relate to metabolite profiles of the components of defense-signaling and the plant performance, as well as to discover novel sources of resistance against spot blotch, we have conducted field studies using 968 wheat genotypes at 5 geographical locations in South-Asia in 2 years. 46 genotypes were identified as resistant. Further, in independent confirmatory trials in subsequent 3 years, over 5 geographical locations, we re-characterized 55 genotypes for their resistance (above 46 along with Yangmai#6, a well characterized resistant genotype, and eight susceptible genotypes). We next determined time-dependent spot blotch-induced metabolite profiles of components of defense-signaling as well as levels of enzymatic components of defense pathway (such as salicylic acid (SA), phenolic acids, and redox components), and derived co-variation patterns with respect to resistance in these 55 genotypes. Spot blotch-induced SA accumulation was negatively correlated to disease progression. Amongst phenolic acids, syringic acid was most strongly inversely correlated to disease progression, indicating a defensive function, which was independently confirmed. Thus, exploring natural variation proved extremely useful in determining traits influencing phenotypic plasticity and adaptation to complex environments. Further, by overcoming environmental heterogeneity, our study identifies germplasm and biochemical traits that are deployable for spot blotch resistance in wheat along South-Asia.

20.
Plant Physiol ; 175(2): 927-946, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811334

RESUMO

In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.


Assuntos
Proteínas Argonautas/metabolismo , Manduca/fisiologia , Modelos Estruturais , Nicotiana/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Argonautas/genética , Herbivoria , Larva , MicroRNAs/genética , Filogenia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Alinhamento de Sequência , Nicotiana/imunologia , Nicotiana/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...