Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 199, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131352

RESUMO

BACKGROUND: Genomic safe harbors are regions of the genome that can maintain transgene expression without disrupting the function of host cells. Genomic safe harbors play an increasingly important role in improving the efficiency and safety of genome engineering. However, limited safe harbors have been identified. RESULTS: Here, we develop a framework to facilitate searches for genomic safe harbors by integrating information from polymorphic mobile element insertions that naturally occur in human populations, epigenomic signatures, and 3D chromatin organization. By applying our framework to polymorphic mobile element insertions identified in the 1000 Genomes project and the Genotype-Tissue Expression (GTEx) project, we identify 19 candidate safe harbors in blood cells and 5 in brain cells. For three candidate sites in blood, we demonstrate the stable expression of transgene without disrupting nearby genes in host erythroid cells. We also develop a computer program, Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper), for knowledge-based tissue-specific genomic safe harbor selection. CONCLUSIONS: Our study provides a new knowledge-based framework to identify tissue-specific genomic safe harbors. In combination with the fast-growing genome engineering technologies, our approach has the potential to improve the overall safety and efficiency of gene and cell-based therapy in the near future.


Assuntos
Epigenômica , Genoma Humano , Cromatina , Epigênese Genética , Genômica , Humanos
2.
Blood ; 137(10): 1327-1339, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33512425

RESUMO

While constitutive CCCTC-binding factor (CTCF)-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell-type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell-type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors. These dynamic sites are enriched for single-nucleotide polymorphisms that are associated with blood cell traits in different linages, and they coincide with the key regulatory elements governing hematopoiesis. CRISPR-Cas9-based perturbation experiments demonstrated that these dynamic CTCF-binding sites play a critical role in red blood cell development. Furthermore, precise deletion of CTCF-binding motifs in dynamic sites abolished interactions of erythroid genes, such as RBM38, with their associated enhancers and led to abnormal erythropoiesis. These results suggest a novel, cell-type-specific function for CTCF in which it may serve to facilitate interaction of distal regulatory emblements with target promoters. Our study of the dynamic, cell-type-specific binding and function of CTCF provides new insights into transcriptional regulation during hematopoiesis.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Eritropoese , Elementos Reguladores de Transcrição , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Elementos Facilitadores Genéticos , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...