Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(7): 4237-4252, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022537

RESUMO

Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, in vivo endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging in vivo. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The in vivo imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.

2.
J Biophotonics ; 17(6): e202400004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531622

RESUMO

Photoacoustic molecular imaging technology has a wide range of applications in biomedical research. In practical scenarios, both the probes and blood generate signals, resulting in the saliency of the probes in the blood environment being diminished, impacting imaging quality. Although several methods have been proposed for saliency enhancement, they inevitably suffer from moderate generality and detection speed. The Grüneisen relaxation (GR) nonlinear effect offers an alternative for enhancing saliency and can improve generality and speed. In this article, the excitation and detection efficiencies are optimized to enhance the GR signal amplitude. Experimental studies show that the saliency of the probe is enhanced. Moreover, the issue of signal aliasing is studied to ensure the accuracy of enhancement results in the tissues. In a word, the feasibility of the GR-based imaging method in saliency enhancement is successfully demonstrated in the study, showing the superiorities of good generality and detection speed.


Assuntos
Imagem Molecular , Dinâmica não Linear , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Imagem Molecular/métodos , Animais , Processamento de Imagem Assistida por Computador/métodos
3.
Photoacoustics ; 36: 100589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318428

RESUMO

The endometrium microvessel system, responsible for supplying oxygen and nutrients to the embryo, holds significant importance in evaluating endometrial receptivity (ER). Visualizing this system directly can significantly enhance ER evaluation. Currently, clinical methods like Narrow-band hysteroscopy and Color Doppler ultrasound are commonly used for uterine blood vessel examination, but they have limitations in depth or resolution. Endoscopic Photoacoustic Imaging (PAE) has proven effective in visualizing microvessels in the digestive tract, while its adaptation to uterine imaging faces challenges due to the uterus's unique physiological characteristics. This paper for the first time that uses high-resolution PAE in vivo to capture a comprehensive network of endometrial microvessels non-invasively. Followed by continuous observation and quantitative analysis in the endometrial injury model, we further corroborated that PAE detection of endometrial microvessels stands as a valuable indicator for evaluating ER. The PAE system showcases its promising potential for integration into reproductive health assessments.

4.
Biomed Opt Express ; 12(4): 1934-1946, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996208

RESUMO

Myocardial infarctions are most often caused by the so-called vulnerable plaques, usually featured as non-obstructive lesions with a lipid-rich necrotic core, thin-cap fibroatheroma, and large plaque size. The identification and quantification of these characteristics are the keys to evaluate plaque vulnerability. However, single modality intravascular methods, such as intravascular ultrasound, optical coherence tomography and photoacoustic, can hardly achieve all the comprehensive information to satisfy clinical needs. In this paper, for the first time, we developed a novel multi-spectral intravascular tri-modality (MS-IVTM) imaging system, which can perform 360° continuous rotation and pull-backing with a 0.9-mm miniature catheter and achieve simultaneous acquisition of both morphological characteristics and pathological compositions. Intravascular tri-modality imaging demonstrates the ability of our MS-IVTM system to provide macroscopic and microscopic structural information of the vessel wall, with identity and quantification of lipids with multi-wavelength excitation. This study offers clinicians and researchers a novel imaging tool to facilitate the accurate diagnosis of vulnerable atherosclerotic plaques. It also has the potential of clinical translations to help better identify and evaluate high-risk plaques during coronary interventions.

5.
Biomed Opt Express ; 11(11): 6721-6731, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282520

RESUMO

Intravascular photoacoustic (IVPA) imaging technology enables the visualization of pathological characteristics (such as inflammation activities, lipid deposition) of the artery wall. Blood flushing is a necessary step in improving the imaging quality in in vivo IVPA imaging. But the limited imaging speed of the systems stretches their flushing time, which is an important obstacle of their clinical translations. In this paper, we report an improvement in IVPA/IVUS imaging speed to 100 frames per second. The high-speed imaging is demonstrated in rabbit in vivo, visualizing the nanoparticles accumulated on abdominal aorta wall at the wavelength of 1064 nm, in real time display. Blood flushing in vivo improves the IVPA signal-noise-ratio by around 3.5 dB. This study offers a stable, efficient and easy-to-use tool for instantaneous disease visualization and disease diagnosis in research and forwards IVPA/IVUS imaging technology towards clinical translations.

6.
Theranostics ; 10(10): 4694-4704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292523

RESUMO

Objectives: The objective of this study was to demonstrate the feasibility of using noninvasive photoacoustic imaging technology along with novel semiconducting polymer nanoparticles for in vivo identifying inflammatory components in carotid atherosclerosis and assessing the severity of inflammation using mouse models. Methods and Results: Healthy carotid arteries and atherosclerotic carotid arteries were imaged in vivo by the noninvasive photoacoustic imaging system. Molecular probes PBD-CD36 were used to label the inflammatory cells to show the inflammation information by photoacoustic imaging. In in vivo imaging experiments, we observed the maximum photoacoustic signal enhancement of 4.3, 5.2, 8 and 16.3 times between 24 h post probe injection and that before probe injection in four carotid arteries belonging to three atherosclerotic mice models. In the corresponding carotid arteries stained with CD36, the ratio of 0.043, 0.061, 0.082 and 0.113 was found between CD36 positive (CD36(+)) expression area and intima-media area (P < 0.05). For the CD36(+) expression less than 0.008 in eight arteries, no photoacoustic signal enhancement was found due to the limited system sensitivity. The photoacoustic signal reflects CD36(+) expression in plaques, which shows the feasibility of using photoacoustic imaging for in vivo assessment of carotid atherosclerosis. Conclusion: This research demonstrates a semiconducting polymer nanoparticle along with photoacoustic technology for noninvasive imaging and assessment of inflammation of carotid atherosclerotic plaques in vivo.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Diagnóstico por Imagem/instrumentação , Inflamação/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Animais , Antígenos CD36/metabolismo , Doenças das Artérias Carótidas/patologia , Estudos de Casos e Controles , Estudos de Viabilidade , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Sondas Moleculares/metabolismo , Sondas Moleculares/ultraestrutura , Polímeros , Pontos Quânticos
7.
Ultrasonics ; 75: 28-35, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898302

RESUMO

In this paper, a novel sandwich-type traveling wave piezoelectric tracked mobile system was proposed, designed, fabricated and experimentally investigated. The proposed system exhibits the advantages of simple structure, high mechanical integration, lack of electromagnetic interference, and lack of lubrication requirement, and hence shows potential application to robotic rovers for planetary exploration. The tracked mobile system is comprised of a sandwich actuating mechanism and a metal track. The actuating mechanism includes a sandwich piezoelectric transducer and two annular parts symmetrically placed at either end of the transducer, while the metal track is tensioned along the outer surfaces of the annular parts. Traveling waves with the same rotational direction are generated in the two annular parts, producing the microscopic elliptical motions of the surface particles on the annular parts. In this situation, if the pre-load is applied properly, the metal track can be driven by friction force to achieve bidirectional movement. At first, the finite element method was adopted to conduct the modal analysis and harmonic response analysis of the actuating mechanism, and the vibration characteristics were measured to confirm the operating principle. Then the optimal driving frequency of the system prototype, namely 35.1kHz, was measured by frequency sensitivity experiments. At last, the mechanical motion characteristics of the prototype were investigated experimentally. The results show that the average motion speeds of the prototype in dual directions were as 72mm/s and 61.5mm/s under the excitation voltage of 500VRMS, respectively. The optimal loading weights of the prototype in bi-directions were 0.32kg and 0.24kg with a maximum speed of 59.5mm/s and 61.67mm/s at the driving voltage of 300VRMS, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...