Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237865

RESUMO

Cerebral ischemia/reperfusion causes exacerbated neuronal damage involving excessive neuroinflammation and oxidative stress. ROS is considered a signal molecule to activate NLRP3; thus, the ROS/NLRP3/pyroptosis axis plays a vital role in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI). Therefore, targeting the inhibition of the ROS/NLRP3/pyroptosis axis may be a promising therapeutic tactic for CIRI. Epimedium (EP) contains many active ingredients (ICA, ICS II, and ICT), which have a wide range of pharmacological activities. However, whether EP can protect against CIRI remains unknown. Thus, in this study, we designed to investigate the effect and possible underlying mechanism of EP on CIRI. The results showed that treatment with EP dramatically mitigated brain damage in rats following CIRI, which was achieved by suppressing mitochondrial oxidative stress and neuroinflammation. Furthermore, we identified the ROS/NLRP3/pyroptosis axis as a vital process and NLRP3 as a vital target in EP-mediated protection. Most interestingly, the main compounds of EP directly bonded with NLRP3, as reflected by molecular docking, which indicated that NLRP3 might be a promising therapeutic target for EP-elicited cerebral protection. In conclusion, our findings illustrate that ICS II protects against neuron loss and neuroinflammation after CIRI by inhibiting ROS/NLRP3-mediated pyroptosis.

2.
Acta Pharmacol Sin ; 43(10): 2482-2494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35292770

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is uncurable. Previous study shows that trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effect in experimental models of AD. In the present study we investigated the molecular mechanisms underlying the beneficial effect of TLB on experimental models of AD in vivo and in vitro. APP/PS1 transgenic mice were administered TLB (4, 8 mg· kg-1 ·d-1, i.g.) for 3 months; rats were subjected to ICV injection of Aß25-35, followed by administration of TLB (2.5, 5, 10 mg· kg-1 ·d-1, i.g.) for 14 days. We showed that TLB administration significantly and dose-dependently ameliorated the cognitive deficits in the two AD animal models, assessed in open field test, novel object recognition test, Y-maze test and Morris water maze test. Furthermore, TLB administration dose-dependently inhibited microglia and astrocyte activation in the hippocampus of APP/PS1 transgenic mice accompanied by decreased expression of high-mobility group box 1 (HMGB1), TLR4 and NF-κB. In Aß25-25-treated BV2 cells, TLB (12.5-50 µM) concentration-dependently increased the cell viability through inhibiting HMGB1/TLR4/NF-κB signaling pathway. HMGB1 overexpression abrogated the beneficial effects of TLB on BV2 cells after Aß25-35 insults. Molecular docking and surface plasmon resonance assay revealed that TLB directly bound to HMGB1 with a KD value of 8.541×10-4 M. Furthermore, we demonstrated that TLB inhibited Aß25-35-induced acetylation of HMGB1 through activating SIRT3/SOD2 signaling pathway, thereby restoring redox homeostasis and suppressing neuroinflammation. These results, for the first time, unravel a new property of TLB: rescuing cognitive impairment of AD via targeting HMGB1 and activating SIRT3/SOD2 signaling pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteína HMGB1 , Fármacos Neuroprotetores , Sirtuína 3 , Superóxido Dismutase , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides , Aditivos Alimentares/farmacologia , Aditivos Alimentares/uso terapêutico , Proteína HMGB1/metabolismo , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Polifenóis , Ratos , Transdução de Sinais , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA