Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 3, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597049

RESUMO

BACKGROUND: Cyproflanilide is a novel chemical that is already undergoing insecticide registration in China and has been categorized as a member of group 30 by the IRAC. Since it was first detected in 2019, the fall armyworm (FAW), Spodoptera frugiperda, has become a serious pest in China. Our laboratory and field efficacy trials indicated that cyproflanilide exhibits high larvicidal activity against FAW. However, the effect of cyproflanilide against FAW remains unknown. And it is worth exploring further before the cyproflanilide becomes commercially available. RESULTS: We found larvae exposed to cyproflanilide had significantly shorter body length and higher death rates compared to control larvae. Additionally, we found surviving larvae had a significantly longer developmental period compared to control larvae. The potential molecular mechanisms of cyproflanilide against FAW were investigated using comparative transcriptomic analyses on larval samples subjected to three insecticide treatments, including cyproflanilide and two other commonly used insecticides against FAW in China, chlorantraniliprole and avermectin. We found that several subunits of the γ-aminobutyric acid receptor (GABAR), a possible target protein of cyproflanilide, were significantly up-regulated at the transcriptional level during cyproflanilide-induced stress. Additionally, between the control and cyproflanilide-treated samples, we identified 131 differentially expressed genes (DEGs) associated with detoxification metabolism. Of these, we found four P450 genes that were significantly up-regulated under cyproflanilide stress but were not DEGs when exposed to chlorantraniliprole and avermectin, or 23 other pesticides from previous reports. Furthermore, we discovered an interesting gene aggregation region for insect cuticle proteins (CPs) on the 18th chromosome, which is likely related to FAW cross-resistance to cyproflanilide and avermectin. CONCLUSIONS: Our results contribute to a greater understanding of the mechanisms by which cyproflanilide affects FAW. Additionally, we identified the similarities and differences in transcriptomic profiling of FAW between the novel insecticide cyproflanilide and two other commonly used insecticides.


Assuntos
Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Spodoptera/metabolismo , Transcriptoma , Resistência a Inseticidas/genética , Larva/genética
2.
Mol Biol Rep ; 50(3): 2399-2410, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586080

RESUMO

BACKGROUND: Chlorantraniliprole is a diamide insecticide widely used in China over the last 15 years. The fall armyworm (FAW), Spodoptera frugiperda, newly invaded China in 2019. The response of FAW to chlorantraniliprole deserves more attention, in the context of many destructive lepidopteran species are resistant to diamide insecticides and the patent on core chemical of chlorantraniliprole in China expired in August 2022. METHODS AND RESULTS: This study investigated the response profile in larvae under chlorantraniliprole-induced (LC50) stress using methods of bioassay, RNA-Seq and qPCR. We observed growth inhibition and lethal effects in FAW larvae, but at a relatively high LC50 value compared to other several pests. Additionally, under chlorantraniliprole-induced stress, 3309 unigenes were found to be differentially expressed genes. The impacted genes included 137 encoding for detoxification enzymes, 29 encoding for cuticle proteins, and 20 key enzymes involved in the chitin metabolism, which all associated with metabolic resistance. Finally, we obtained the single nucleotide polymorphisms (SNPs) of two RyR genes, which are the target proteins for chlorantraniliprole. We also investigated the causes of the high LC50 value in our FAW, which possibly related to the stabilized 4743 M on SNP frequency of RyR. These findings documented the genetic background of RyR of FAW and indicated that application of chlorantraniliprole has a high risk of controlling FAW in China. CONCLUSION: In brief, our results provide a better understanding of the mechanisms of chlorantraniliprole toxicity and detoxification in FAW, and will aid in monitoring the development of resistant strains for a newly pest to an old insecticide.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Spodoptera/genética , Transcriptoma/genética , Diamida/farmacologia , Resistência a Inseticidas/genética , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...