Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 124(2): 239-253, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538649

RESUMO

Pre-eclampsia (PE) is a serious complication in pregnant women characterized by failure of placental remodeling and is one of the primary causes of changes in the placental structure and function. The aberrant expression of long noncoding RNA is associated with the occurrence and progression of PE. This study found that linc01116 expression was significantly downregulated in PE patients and was related to poor uterine spiral artery remodeling. Knockdown of linc01116 remarkably decreased the angiogenesis of trophoblast cells in vitro and in vivo. Mechanistically, IGF2BP2 regulated linc01116 RNA stability via m6 A methylation. Bioinformatics and other experiments further revealed that linc01116 upregulates AAMP expression by adsorbing miR-210-3p in trophoblast cells. In conclusion, this study revealed the critical role of linc01116 in regulating trophoblast angiogenesis. Furthermore, the study provides new clues for detecting placental pathology in PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , RNA Longo não Codificante , Humanos , Feminino , Gravidez , Placenta/metabolismo , MicroRNAs/genética , Pré-Eclâmpsia/genética , Trofoblastos/metabolismo , Biomarcadores/metabolismo , RNA Longo não Codificante/genética , Proliferação de Células/genética , Movimento Celular/genética , Proteínas de Ligação a RNA/metabolismo
2.
Front Cell Dev Biol ; 10: 837000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016656

RESUMO

Preeclampsia (PE) is the predominant medical condition leading to maternal and fetal mortality, and the lack of effective treatment increases its risk to the public health. Among the numerous predisposing factors, the ineffectual remodeling of the uterine spiral arteries, which can induce abnormal placental angiogenesis, has been focused to solve the pathogenesis of PE. According to the preceding research results, abnormal expression of long non-coding RNAs (lncRNA)s could be associated with the pathological changes inducing PE. To be more specific, lncRNA HIF1A-AS2 was proposed for its potential to participate in the molecular mechanisms underlying PE. In vitro, in trophoblast cell lines HTR-8/SVneo and human umbilical vein endothelial cells HUVECs, HIF1A-AS2 knockdown inhibited cell proliferation, migration and tube formation. Mechanistically, transcription factor FOXP1 could regulate the expression of HIF1A-AS2. Moreover, a series of assays, including RNA pull down and mass spectrometry, RNA immunoprecipitation and chromatin immunoprecipitation assay, revealed that HIF1A-AS2 interacted with Lamin A/C (LMNA) to inhibit ANGPTL4 expression in trophoblast cells, thus further participating in the progression of PE. Taken together, these findings suggested that further analysis on HIF1A-AS2 could contribute to the development of prospective therapeutic strategy for PE.

3.
Mol Ther ; 30(4): 1692-1705, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35124178

RESUMO

Preeclampsia (PE) is associated with maternal and fetal perinatal morbidity and mortality, which brings tremendous suffering and imposes an economic burden worldwide. The failure of uterine spiral artery remodeling may be related to the abnormal function of trophoblasts and lead to the occurrence and progression of PE. Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the failure of uterine spiral artery remodeling. However, the regulation of lncRNA expression in PE is poorly characterized. Here, we reported that hypoxia-induced microRNA (miR)-218 inhibited the expression of lncRNA TUG1 by targeting FOXP1. Further RNA sequencing and mechanism analysis revealed that silencing of TUG1 increased the expression of DNA demethylase TET3 and proliferation-related DUSP family, including DUSP2, DUSP4, and DUSP5, via binding to SUV39H1 in the nucleus. Moreover, TUG1 modulated the DUSP family in vitro through a TET3-mediated epigenetic mechanism. Taken together, our results unmask a new regulatory network mediated by TUG1 as an essential determinant of the pathogenesis of PE, which regulates cell growth and possibly the occurrence and development of other diseases.


Assuntos
MicroRNAs , Pré-Eclâmpsia , RNA Longo não Codificante , Artérias/metabolismo , Artérias/patologia , Proliferação de Células/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...