Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mamm Genome ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886201

RESUMO

Esophageal adenocarcinoma (EAC) is one of the most malignant tumors in the digestive system. To make thing worse, the scarcity of treatment options is disheartening. However, if detected early, there is a possibility of reversing the condition. Unfortunately, there is still a lack of relevant early screening methods. Considering that Barrett's esophagus (BE), a precursor lesion of EAC, has been confirmed as the only known precursor of EAC. Analyzing which BE cases will progress to EAC and understanding the processes and mechanisms involved is of great significance for early screening of such patients. Considering the significant alterations in the gut microbiota of patients with BE and its potential role in the progression to EAC, this study aims to analyze the relationship between BE, EAC, and GM to identify potential diagnostic biomarkers and therapeutic targets. This study utilized comprehensive statistical data on gut microbiota from a large-scale genome-wide association meta-analysis conducted by the MiBioGen consortium (n = 18,340). Subsequently, we selected a set of single nucleotide polymorphisms (SNPs) that fell below the genome-wide significance threshold (1 × 10-5) as instrumental variables. To investigate the causal relationship between gut microbiota and BE and EAC, we employed various MR analysis methods, including Inverse Variance Weighting (IVW), MR-Egger regression, weighted median (WM), and weighted mean. Additionally, we assessed the level of pleiotropy, heterogeneity, and stability of genetic variations through MR-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis. Furthermore, we conducted reverse MR analysis to identify the causal relationships between gut microbiota and BE and EAC. The results from the Inverse Variance-Weighted (IVW) analysis indicate that Alistipes (P = 4.86 × 10-2), Lactobacillus (P = 2.11 × 10-2), Prevotella 7 (P = 4.28 × 10-2), and RuminococcaceaeUCG004 (P = 4.34 × 10-2) are risk factors for Barrett's esophagus (BE), while Flavonifractor (P = 8.81 × 10-3) and RuminococcaceaeUCG004 (P = 4.99 × 10-2) are risk factors for esophageal adenocarcinoma (EAC). On the other hand, certain gut microbiota genera appear to have a protective effect against both BE and EAC. These include Eubacterium (nodatum group) (P = 4.51 × 10-2), Holdemania (P = 1.22 × 10-2), and Lactococcus (P = 3.39 × 10-2) in the BE cohort, as well as Eubacterium (hallii group) (P = 4.07 × 10-2) and Actinomyces (P = 3.62 × 10-3) in the EAC cohort. According to the results of reverse MR analysis, no significant causal effects of BE and EAC on gut microbiota were observed. Furthermore, no significant heterogeneity or pleiotropy was detected in the instrumental variables. We have established a causal relationship between the gut microbiota and BE and EAC. This study holds profound significance for screening BE patients who may be at risk of deterioration, as it can provide them with timely medical interventions to reverse the condition.

2.
Cell Death Discov ; 10(1): 218, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704362

RESUMO

The incidence of autoimmune diseases has significantly increased over the past 20 years. Excessive host immunoreactions and disordered immunoregulation are at the core of the pathogenesis of autoimmune diseases. The traditional anti-tumor chemotherapy drug CPT-11 is associated with leukopenia. Considering that CPT-11 induces leukopenia, we believe that it is a promising drug for the control of autoimmune diseases. Here, we show that CPT-11 suppresses T cell proliferation and pro-inflammatory cytokine production in healthy C57BL/6 mice and in complete Freund's adjuvant-challenged mice. We found that CPT-11 effectively inhibited T cell proliferation and Th1 and Th17 cell differentiation by inhibiting glycolysis in T cells. We also assessed CPT-11 efficacy in treating autoimmune diseases in models of experimental autoimmune encephalomyelitis and psoriasis. Finally, we proved that treatment of autoimmune diseases with CPT-11 did not suppress long-term immune surveillance for cancer. Taken together, these results show that CPT-11 is a promising immunosuppressive drug for autoimmune disease treatment.

3.
Heliyon ; 10(1): e24228, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38234880

RESUMO

Background: Toxoplasma gondii is an opportunistic parasitic protozoan that can cause highly fatal toxoplasmic encephalitis when the host immune system is compromised. However, the transition from chronic to acute infection remains poorly understood. In this study, we conducted a 180-day observation of tissue damage and inflammation in the brains of mice infected with T. gondii. Subsequently, we investigated the inflammatory factors that T. gondii infection may alter using two-sample Mendelian randomization (MR) analysis. Methods: We first established a mouse model of T. gondii infection. Subsequently, the mice were euthanized, the brain tissue collected, and immunohistochemistry and hematoxylin and eosin staining performed to observe tissue damage and inflammatory conditions at various time points. Our study also included a published large-scale genome-wide association study meta-analysis that encompassed the circulating concentrations of 41 cytokines. This dataset included 8293 individuals from three independent population cohorts in Finland. Genetic association data for T. gondii were sourced from the Integrative Epidemiology Unit and European Bioinformatics Institute datasets, which included 5010 and 559 individuals of European ancestry, respectively. To assess the causal relationship between T. gondii infection and inflammatory biomarkers, we applied a two-sample MR. Results: Inflammation and damage resulting from T. gondii infection varied among the distinct regions of the mouse brain. Based on the MR analysis results, three inflammatory biomarkers were chemically assigned to Chemokines and Others, including IP10 (interferon gamma inducible protein-10), MCP1 (monocyte chemoattractant protein-1), and TRAIL (TNF-related apoptosis-inducing ligand). Conclusion: Our study commenced with the assessment of tissue damage and progression of inflammation in distinct regions of the mouse brain after T. gondii infection. Subsequently, using MR analysis, we detected potential alterations in inflammatory factors associated with this infection. These findings offer valuable insights into the mechanisms underlying toxoplasmic encephalitis and suggest directions for the prevention and treatment of T. gondii infections.

4.
Front Immunol ; 14: 1279837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920459

RESUMO

Neutrophils comprise the majority of immune cells in human peripheral circulation, have potent antimicrobial activities, and are clinically significant in their abundance, heterogeneity, and subcellular localization. In the past few years, the role of neutrophils as components of the innate immune response has been studied in numerous ways, and these cells are crucial in fighting infections, autoimmune diseases, and cancer. T-helper 17 (Th17) cells that produce interleukin 17 (IL-17) are critical in fighting infections and maintaining mucosal immune homeostasis, whereas they mediate several autoimmune diseases. Neutrophils affect adaptive immune responses by interacting with adaptive immune cells. In this review, we describe the physiological roles of both Th17 cells and neutrophils and their interactions and briefly describe the pathological processes in which these two cell types participate. We provide a summary of relevant drugs targeting IL-17A and their clinical trials. Here, we highlight the interactions between Th17 cells and neutrophils in diverse pathophysiological situations.


Assuntos
Doenças Autoimunes , Neutrófilos , Humanos , Células Th17 , Imunidade Inata
5.
Front Immunol ; 14: 1199233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304262

RESUMO

Reactive oxygen species (ROS) are produced both enzymatically and non-enzymatically in vivo. Physiological concentrations of ROS act as signaling molecules that participate in various physiological and pathophysiological activities and play an important role in basic metabolic functions. Diseases related to metabolic disorders may be affected by changes in redox balance. This review details the common generation pathways of intracellular ROS and discusses the damage to physiological functions when the ROS concentration is too high to reach an oxidative stress state. We also summarize the main features and energy metabolism of CD4+ T-cell activation and differentiation and the effects of ROS produced during the oxidative metabolism of CD4+ T cells. Because the current treatment for autoimmune diseases damages other immune responses and functional cells in the body, inhibiting the activation and differentiation of autoreactive T cells by targeting oxidative metabolism or ROS production without damaging systemic immune function is a promising treatment option. Therefore, exploring the relationship between T-cell energy metabolism and ROS and the T-cell differentiation process provides theoretical support for discovering effective treatments for T cell-mediated autoimmune diseases.


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Espécies Reativas de Oxigênio , Inflamação , Linfócitos T CD4-Positivos
6.
Front Immunol ; 13: 988481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119103

RESUMO

High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.


Assuntos
Diabetes Mellitus Tipo 2 , Xarope de Milho Rico em Frutose , Diabetes Mellitus Tipo 2/etiologia , Frutose/efeitos adversos , Glucose , Humanos , Inflamação , Sacarose , Açúcares
7.
Electrophoresis ; 43(7-8): 848-856, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842292

RESUMO

Because of its excellent monodispersity, high throughput, and low volume, microfluidics-based droplet PCR has become the core technology of digital PCR, next-generation sequencing, and other technology platforms. This study constructed a microfluidic water-in-oil droplet PCR system and amplified a commercially available forensic 22-plex short tandem repeat detection system. We analyzed the sensitivity, concordance, amplification efficiency of the droplet PCR, and influence factors of the above aspects. The droplet PCR showed high concordance with conventional bulk PCR and had high sensitivity as 0.125 ng. Furthermore, we observed the performance of droplet PCR in high-order mixed DNA. As the mixture ratios from 10:1 to 30:1, droplet PCR presented more mixture proportion (Mx) increased loci from 11 (57.89%) to 17 (89.47%). In the mixture ratios 20:1, 25:1, and 30:1, significant Mx differences between droplet PCR and bulk PCR were observed (p < 0.05). The results showed that the droplet PCR could improve the identification of the minor contributor's DNA in a two-person mixture and alleviate the imbalanced amplification problem. This study provides a reference and basis for the wide application of droplet PCR in forensic science.


Assuntos
Microfluídica , Repetições de Microssatélites , DNA/análise , DNA/genética , Impressões Digitais de DNA/métodos , Ciências Forenses , Humanos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/métodos
8.
Forensic Sci Int Genet ; 56: 102609, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717077

RESUMO

Polymerase chain reaction (PCR) plays an important role in forensic DNA analysis. However, the amplification of low-template DNA (LTDNA) samples usually encounters unsatisfactory results for the limited efficiency of PCR, which would interfere with the subsequent profile interpretation. Polymerase chain displacement reaction (PCDR) is a highly-efficient technique characterized by combining PCR and strand displacement reaction into a single PCDR cycle. This study explored the feasibility of PCDR for improving forensic LTDNA analysis. STR markers commonly used in forensic genetics were subjected to PCDR amplification and capillary electrophoresis detection. The results of singleplex reactions indicated that PCDR surpassed original PCR in efficiency for STR amplification. The average peak height of alleles in PCDR profiles was linearly correlated to the number of outer primers adopted for initiating the strand displacement process. Further, we assessed the multiplexing potential of PCDR by incorporating 17 STRs included in the expanded CODIS core loci and Amelogenin gene into a multiplex PCDR system. For pristine DNA templates ranged from 200 pg to 12.5 pg, the multiplex PCDR system consistently exhibited higher allele peak height as well as less allele dropout compared to the multiplex PCR references. Meanwhile, a significant reduction of stutter ratio was extensively observed in PCDR profiles. We also tested mock casework samples to verify the practical ability of multiplex PCDR for LTDNA detection. With DNA input varying from 48.1 pg to 6.6 pg, the multiplex PCDR system consistently obtained more allelic information than multiplex PCR methods. Our data collectively suggested that it is feasible to apply PCDR in forensic LTDNA analysis.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Amelogenina/genética , DNA/genética , Humanos , Reação em Cadeia da Polimerase Multiplex
9.
Yi Chuan ; 43(10): 962-971, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34702708

RESUMO

Microhaplotype loci (microhaplotype, MHs), defined by two or more closely linked single nucleotide polymorphisms, are a type of molecular marker within a short segment of DNA. As emerging forensic genetic markers, MHs have no stutter artefacts and higher polymorphism, and permit the design of smaller amplicons. In order to identify the markers from a genome wide perspective and explore their potential application further, we constructed the most comprehensive MH dataset to date, based on the whole genome sequencing data of 105 Han individuals in Southern China from 1000 Genomes Project. The results showed that there were 9,490,075 MH loci in the range of 350 bp in the human genome, and the distribution density of microhaplotypes suggests gene variation. Polymorphism analysis of MHs from various base spans showed that the polymorphism of MHs could reach or exceed common short tandem repeat sites. In addition, based on their flexible assembly, a scheme to build the public database of microhaplotypes was proposed.


Assuntos
Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , China , Genética Forense , Frequência do Gene , Genética Populacional , Genômica , Haplótipos , Humanos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...