Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503495

RESUMO

Repetitive firing of granule cells (GCs) in the dentate gyrus (DG) facilitates synaptic transmission to the CA3 region. This facilitation can gate and amplify the flow of information through the hippocampus. High-frequency bursts in the DG are linked to behavior and plasticity, but GCs do not readily burst. Under normal conditions, a single shock to the perforant path in a hippocampal slice typically drives a GC to fire a single spike, and only occasionally more than one spike is seen. Repetitive spiking in GCs is not robust, and the mechanisms are poorly understood. Here, we used a hybrid genetically encoded voltage sensor to image voltage changes evoked by cortical inputs in many mature GCs simultaneously in hippocampal slices from male and female mice. This enabled us to study relatively infrequent double and triple spikes. We found GCs are relatively homogeneous and their double spiking behavior is cell autonomous. Blockade of GABA type A receptors increased multiple spikes and prolonged the interspike interval, indicating inhibitory interneurons limit repetitive spiking and set the time window for successive spikes. Inhibiting synaptic glutamate release showed that recurrent excitation mediated by hilar mossy cells contributes to, but is not necessary for, multiple spiking. Blockade of T-type Ca2+ channels did not reduce multiple spiking but prolonged interspike intervals. Imaging voltage changes in different GC compartments revealed that second spikes can be initiated in either dendrites or somata. Thus, pharmacological and biophysical experiments reveal roles for both synaptic circuitry and intrinsic excitability in GC repetitive spiking.


Assuntos
Potenciais de Ação , Giro Denteado , Animais , Giro Denteado/fisiologia , Giro Denteado/citologia , Masculino , Camundongos , Feminino , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologia , Camundongos Transgênicos
2.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792362

RESUMO

The cochlear nuclei (CNs) receive sensory information from the ear and perform fundamental computations before relaying this information to higher processing centers. These computations are performed by distinct types of neurons interconnected in circuits dedicated to the specialized roles of the auditory system. In the present study, we explored the use of voltage imaging to investigate CN circuitry. We tested two approaches based on fundamentally different voltage sensing technologies. Using a voltage-sensitive dye we recorded glutamate receptor-independent signals arising predominantly from axons. The mean conduction velocity of these fibers of 0.27 m/s was rapid but in range with other unmyelinated axons. We then used a genetically-encoded hybrid voltage sensor (hVOS) to image voltage from a specific population of neurons. Probe expression was controlled using Cre recombinase linked to c-fos activation. This activity-induced gene enabled targeting of neurons that are activated when a mouse hears a pure 15-kHz tone. In CN slices from these animals auditory nerve fiber stimulation elicited a glutamate receptor-dependent depolarization in hVOS probe-labeled neurons. These cells resided within a band corresponding to an isofrequency lamina, and responded with a high degree of synchrony. In contrast to the axonal origin of voltage-sensitive dye signals, hVOS signals represent predominantly postsynaptic responses. The introduction of voltage imaging to the CN creates the opportunity to investigate auditory processing circuitry in populations of neurons targeted on the basis of their genetic identity and their roles in sensory processing.


Assuntos
Núcleo Coclear , Camundongos , Animais , Neurônios/fisiologia , Axônios/fisiologia , Percepção Auditiva , Audição , Vias Auditivas/fisiologia
3.
J Gen Physiol ; 153(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33755721

RESUMO

Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.


Assuntos
Neurônios , Sinapses , Animais , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores , Camundongos , Transmissão Sináptica
4.
Proc Natl Acad Sci U S A ; 116(8): 3262-3267, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728295

RESUMO

Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.


Assuntos
Sinalização do Cálcio/genética , Retina/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Vias Visuais/fisiologia , Potenciais de Ação/genética , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Patch-Clamp , Fosforilação , Ligação Proteica , Retina/crescimento & desenvolvimento , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Potenciais Sinápticos/genética
5.
J Virol ; 90(20): 8994-9007, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466427

RESUMO

UNLABELLED: The cellular endosomal sorting complex required for transport (ESCRT) was recently found to mediate important morphogenesis processes at the nuclear envelope (NE). We previously showed that the Epstein-Barr virus (EBV) BFRF1 protein recruits the ESCRT-associated protein Alix to modulate NE structure and promote EBV nuclear egress. Here, we uncover new cellular factors and mechanisms involved in this process. BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. BFRF1 is ubiquitinated, and elimination of possible ubiquitination by either lysine mutations or fusion of a deubiquitinase hampers NE-derived vesicle formation and virus maturation. While it interacts with multiple Nedd4-like ubiquitin ligases, BFRF1 preferentially binds Itch ligase. We show that Itch associates with Alix and BFRF1 and is required for BFRF1-induced NE vesicle formation. Our data demonstrate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE and EBV maturation, uncovering novel regulatory mechanisms of nuclear egress of viral nucleocapsids. IMPORTANCE: The nuclear envelope (NE) of eukaryotic cells not only serves as a transverse scaffold for cellular processes, but also as a natural barrier for most DNA viruses that assemble their nucleocapsids in the nucleus. Previously, we showed that the cellular endosomal sorting complex required for transport (ESCRT) machinery is required for the nuclear egress of EBV. Here, we further report the molecular interplay among viral BFRF1, the ESCRT adaptor Alix, and the ubiquitin ligase Itch. We found that BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. The lysine residues and the ubiquitination of BFRF1 regulate the formation of BFRF1-induced NE-derived vesicles and EBV maturation. During the process, a ubiquitin ligase, Itch, preferably associates with BFRF1 and is required for BFRF1-induced NE vesicle formation. Therefore, our data indicate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE, suggesting novel regulatory mechanisms for ESCRT-mediated NE modulation.


Assuntos
Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...