Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 31(4): 1050-1063, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894333

RESUMO

OBJECTIVE: Metabolic reprogramming is a main feature of proinflammatory macrophage polarization, a process that leads to inflammation in dysfunctional adipose tissue. Therefore, the study aim was to explore whether sirtuin 3 (SIRT3), a mitochondrial deacetylase, participates in this pathophysiological process. METHODS: Macrophage-specific Sirt3 knockout (Sirt3-MKO) mice and wild-type littermates were treated with a high-fat diet. Body weight, glucose tolerance, and inflammation were evaluated. Bone marrow-derived macrophages and RAW264.7 cells were treated with palmitic acid to explore the mechanism of SIRT3 on inflammation. RESULTS: The expression of SIRT3 was significantly repressed in both bone marrow-derived macrophages and adipose tissue macrophages in mice fed with a high-fat diet. Sirt3-MKO mice exhibited accelerated body weight and severe inflammation, accompanied with reduced energy expenditure and worsened glucose metabolism. In vitro experiments showed that SIRT3 inhibition or knockdown exacerbated palmitic acid-induced proinflammatory macrophage polarization, whereas SIRT3 restoration displayed opposite effects. Mechanistically, SIRT3 deficiency resulted in hyperacetylation of succinate dehydrogenase that led to succinate accumulation, which suppressed the transcription of Kruppel-like factor 4 via increasing histone methylation on its promoter, thus evoking proinflammatory macrophages. CONCLUSIONS: This study emphasizes an important preventive role of SIRT3 in macrophage polarization and implies that SIRT3 is a promising therapeutic target for obesity.


Assuntos
Resistência à Insulina , Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Ácido Palmítico/farmacologia , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peso Corporal , Camundongos Knockout , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
2.
Cell Signal ; 105: 110606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681290

RESUMO

Metabolic reprogramming of macrophages initiates the polarization of pro-inflammatory macrophages that exacerbates adipocyte dysfunction and obesity. The imbalance of mitochondrial Ca2+ homeostasis impairs mitochondrial function and promotes inflammation. Connexin 43 (Cx43), a ubiquitous gap junction protein, has been demonstrated to regulate intracellular Ca2+ homeostasis. Here we explored whether macrophage Cx43 affects the obesity process by regulating the polarization of macrophage. HFD treatment induced obesity and exacerbated macrophages infiltration with upregulation of macrophages Cx43. Macrophage-specific knockout of Cx43 reduced HFD-induced obesity by alleviating inflammation in adipose tissue, with less pro-inflammatory M1 macrophage infiltration. Consistently, inhibition or knockdown of Cx43 improved palmitic acid (PA) induced mitochondrial dysfunction, as indicated by improved oxidative phosphorylation (OXPHOS), reduced formation of mitochondria-associated membranes (MAM) and mitochondrial Ca2+ overload. Mechanistically, Cx43 interacted with the mitochondrial Ca2+ uniporter (MCU) and knockdown of Cx43 alleviated PA-induced succinate dehydrogenase (SDH) oxidation by lowering MCU-mediated mitochondrial Ca2+ uptake, which then, promoting the polarization of pro-inflammatory M1 macrophages. Thus, this study identified Cx43 as a mitochondrial Ca2+ regulator that aggravates obesity via promoting macrophages polarized to M1 pro-inflammatory phenotype and suggests that Cx43 might be a promising therapeutic target antagonizing obesity.


Assuntos
Cálcio , Conexina 43 , Humanos , Cálcio/metabolismo , Conexina 43/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo
3.
J Am Heart Assoc ; 11(15): e025328, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904193

RESUMO

Background Salt-sensitive hypertension is highly prevalent and associated with cardiorenal damage. Large clinical trials have demonstrated that SGLT2 (sodium-glucose cotransporter 2) inhibitors exert hypotensive effect and cardiorenal protective benefits in patients with hypertension with and without diabetes. However, the underlying mechanism remains elusive. Methods and Results Dahl salt-sensitive rats and salt-insensitive controls were fed with 8% high-salt diet and some of them were treated with canagliflozin. The blood pressure, urinary sodium excretion, and vascular function were detected. Transient receptor potential channel 3 (TRPC3) knockout mice were used to explain the mechanism. Canagliflozin treatment significantly reduced high-salt-induced hypertension and this effect was not totally dependent on urinary sodium excretion in salt-sensitive hypertensive rats. Assay of vascular function and proteomics showed that canagliflozin significantly inhibited vascular cytoplasmic calcium increase and vasoconstriction in response to high-salt diet. High salt intake increased vascular expression of TRPC3 in salt-sensitive rats, which could be alleviated by canagliflozin treatment. Overexpression of TRPC3 mimicked salt-induced vascular cytosolic calcium increase in vitro and knockout of TRPC3 erased the antihypertensive effect of canagliflozin. Mechanistically, high-salt-induced activation of NCX1 (sodium-calcium exchanger 1) reverse mode increased cytoplasmic calcium level and vasoconstriction, which required TRPC3, and this process could be blocked by canagliflozin. Conclusions We define a previously unrecognized role of TRPC3/NCX1 mediated vascular calcium dysfunction in the development of high-salt-induced hypertension, which can be improved by canagliflozin treatment. This pathway is potentially a novel therapeutic target to antagonize salt-sensitive hypertension.


Assuntos
Canagliflozina , Hipertensão , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Pressão Sanguínea , Cálcio/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Glucose/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Camundongos , Ratos , Ratos Endogâmicos Dahl , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Canais de Cátion TRPC/genética
4.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35077394

RESUMO

Currently, the most effective strategy for dealing with Alzheimer's disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3-mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.


Assuntos
Doença de Alzheimer , Hiperglicemia , Hipoglicemia , Canais de Potencial de Receptor Transitório , Doença de Alzheimer/patologia , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 3 , Hipoglicemia/complicações , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Canal de Cátion TRPC6
5.
Front Bioeng Biotechnol ; 9: 788461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938723

RESUMO

The therapy of burns is a challenging clinical issue. Burns are long-term injuries, and numerous patients suffer from chronic pain. Burn treatment includes management, infection control, wound debridement and escharotomy, dressing coverage, skin transplantation, and the use of skin substitutes. The future of advanced care of burn wounds lies in the development of "active dressings". Hydrogel dressings have been employed universally to accelerate wound healing based on their unique properties to overcome the limitations of existing treatment methods. This review briefly introduces the advantages of hydrogel dressings and discusses the development of new hydrogel dressings for wound healing along with skin regeneration. Further, the treatment strategies for burns, ranging from external to clinical, are reviewed, and the functional classifications of hydrogel dressings along with their clinical value for burns are discussed.

6.
Front Immunol ; 12: 702835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421909

RESUMO

Arising incidence of metabolic disorders and related diseases caused by obesity is a global health concern. Elucidating the role of the immune system in this process will help to understand the related mechanisms and develop treatment strategies. Here, we have focused on innate immune cells in visceral adipose tissue (VAT) and summarized the roles of these cells in maintaining the homeostasis of VAT. Furthermore, this review reveals the importance of quantitative and functional changes of innate immune cells when the metabolic microenvironment changes due to obesity or excess lipids, and confirms that these changes eventually lead to the occurrence of chronic inflammation and metabolic diseases of VAT. Two perspectives are reviewed, which include sequential changes in various innate immune cells in the steady state of VAT and its imbalance during obesity. Cross-sectional interactions between various innate immune cells at the same time point are also reviewed. Through delineation of a comprehensive perspective of VAT homeostasis in obesity-induced chronic inflammation, and ultimately metabolic dysfunction and disease, we expect to clarify the complex interactive networks among distinct cell populations and propose that these interactions should be taken into account in the development of biotherapeutic strategies.


Assuntos
Homeostase/imunologia , Imunidade Inata/imunologia , Gordura Intra-Abdominal/imunologia , Obesidade/imunologia , Animais , Humanos
7.
Front Bioeng Biotechnol ; 8: 590549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117788

RESUMO

The injury to the spinal cord is among the most complex fields of medical development. Spinal cord injury (SCI) leads to acute loss of motor and sensory function beneath the injury level and is linked to a dismal prognosis. Currently, while a strategy that could heal the injured spinal cord remains unforeseen, the latest advancements in polymer-mediated approaches demonstrate promising treatment forms to remyelinate or regenerate the axons and to integrate new neural cells in the SCI. Moreover, they possess the capacity to locally deliver synergistic cells, growth factors (GFs) therapies and bioactive substances, which play a critical role in neuroprotection and neuroregeneration. Here, we provide an extensive overview of the SCI characteristics, the pathophysiology of SCI, and strategies and challenges for the treatment of SCI in a review. This review highlights the recent encouraging applications of polymer-based scaffolds in developing the novel SCI therapy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32582657

RESUMO

The increasing number of patients with chronic wounds caused by diseases, such as diabetes, malignant tumors, infections, and vasculopathy, has caused severe economic and social burdens. The main clinical treatments for chronic wounds include the systemic use of antibiotics, changing dressings frequently, operative debridement, and flap repair. These routine therapeutic strategies are characterized by a long course of treatment, substantial trauma, and high costs, and fail to produce satisfactory results. Biomaterial dressings targeting the different stages of the pathophysiology of chronic wounds have become an active research topic in recent years. In this review, after providing an overview of the epidemiology of chronic wounds, and the pathophysiological characteristics of chronic wounds, we highlight the functional biomaterials that can enhance chronic wound healing through debridement, anti-infection and antioxidant effects, immunoregulation, angiogenesis, and extracellular matrix remodeling. It is hoped that functional biomaterials will resolve the treatment dilemma for chronic wounds and improve patient quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...