Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(16): eabj8394, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442733

RESUMO

How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.

2.
Sci Rep ; 8(1): 11791, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087355

RESUMO

Thirty conductivity-temperature-depth profiler casts in the Challenger Deep were conducted during four cruises from December 2015 to February 2017. Two cruises took place in the summer, and two in the winter. The results demonstrated that water characteristics varied seasonally. The temperature minimum values were the same between the four cruises, but its depth was noticeably shallower in the winter than that in the summer. The θ-S diagram indicated that deep water is more saline in the summer than that in winter at the same potential temperature. Mixing is more intense between 5000 and 6800 m in the summer than that in the winter. The dissipation rate and eddy diffusivity vertically averaged between 5000 and 6800 m in the summer were εT = 3.277 × 10-8 m2s-3 and KzT = 2.58 × 10-2 m2s-1, respectively. The geostrophic flows below the reference level of 3000 dbar were cyclonic in the summer, travelling westwards in the northern and eastwards in the southern areas of the Challenger Deep.

3.
Sci Rep ; 6: 24338, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075644

RESUMO

Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.

4.
Sci Rep ; 5: 17416, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26617343

RESUMO

Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport.

5.
Sensors (Basel) ; 12(1): 373-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22368475

RESUMO

The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Oceanografia/instrumentação , Oceanografia/métodos , Telemetria/instrumentação , Simulação por Computador , Modelos Teóricos , Movimento (Física) , Oceanos e Mares , Estatística como Assunto , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...