Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Oncol ; 16(3): 979-990, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577474

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer (GC), the Wnt/ß-Catenin signaling pathway is closely linked to tumourigenesis. GC has a high mortality rate and treatment cost, and there are no drugs to prevent the progression of gastric precancerous lesions to GC. Therefore, it is necessary to find a novel drug that is inexpensive and preventive to against GC. AIM: To explore the effects of H. pylori and Moluodan on the Wnt/ß-Catenin signaling pathway and precancerous lesions of GC (PLGC). METHODS: Mice were divided into the control, N-methyl-N-nitrosourea (MNU), H. pylori + MNU, and Moluodan groups. We first created an H. pylori infection model in the H. pylori + MNU and Moluodan groups. A PLGC model was created in the remaining three groups except for the control group. Moluodan was fed to mice in the Moloudan group ad libitum. The general condition of mice were observed during the whole experiment period. Gastric tissues of mice were grossly and microscopically examined. Through quantitative real-time PCR (qRT-PCR) and Western blotting analysis, the expression of relevant genes were detected. RESULTS: Mice in the H. pylori + MNU group showed the worst performance in general condition, gastric tissue visual and microscopic observation, followed by the MNU group, Moluodan group and the control group. QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes, the results showed that the H. pylori + MNU group had the highest expression, followed by the MNU group, Moluodan group and the control group. CONCLUSION: H. pylori can activate the Wnt/ß-catenin signaling pathway, thereby facilitating the development and progression of PLGC. Moluodan suppressed the activation of the Wnt/ß-catenin signaling pathway, thereby decreasing the progression of PLGC.

2.
PLoS One ; 17(6): e0266320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687606

RESUMO

Many studies suggest that species diversity and abiotic factors promote ecosystem multifunctionality. However, whether ecosystem multifunctionality is impacted by phylogenetic diversity remains controversial. The present study tested this in an arid desert ecosystem in Ebinur Lake Basin using soil C:N ratio, soil pH, and soil salinity as abiotic factors, and species diversity and phylogenetic diversity as indicators of plant diversity. The effects of plant diversity and abiotic factors on single ecosystem functions (nutrient cycling, carbon stocks, water regulation, and wood production) and ecosystem multifunctionality were studied. We used structural equation modeling to assess the relationships among different functional groups and factors. The results showed that: (1) abiotic factors, particularly pH and C:N ratio in soil, had the strongest positive impact on multifunctionality (P < 0.001). The phylogenetic diversity and species diversity showed inconsistent changes, and their contribution to multifunctionality were not outstanding. (2) Abiotic factors were closely related to different ecosystem functions. Soil C:N had a significant positive effect on carbon stocks (P < 0.001), with an effect index of 0.89. Soil pH significantly enhanced nutrient cycling and water regulation. The role of plant diversity varied with the combination of different ecosystem functions. Phylogenetic diversity and species diversity influenced wood production, but showed opposite functions. (3) The importance of four single-ecosystem functions in an arid region was ranked as follows: carbon stocks > water regulation > nutrient cycling > wood production, emphasizing the importance of carbon elements in these ecosystems. These results improve our understanding of the drivers of multifunctionality in arid ecosystems, facilitating the elucidation of the influence of abiotic factors and phylogenetic diversity.


Assuntos
Biodiversidade , Ecossistema , Carbono , Filogenia , Plantas , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...