Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(6): 100643, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37381601

RESUMO

Redwood trees (Sequoioideae), including Metasequoia glyptostroboides (dawn redwood), Sequoiadendron giganteum (giant sequoia), and Sequoia sempervirens (coast redwood), are threatened and widely recognized iconic tree species. Genomic resources for redwood trees could provide clues to their evolutionary relationships. Here, we report the 8-Gb reference genome of M. glyptostroboides and a comparative analysis with two related species. More than 62% of the M. glyptostroboides genome is composed of repetitive sequences. Clade-specific bursts of long terminal repeat retrotransposons may have contributed to genomic differentiation in the three species. The chromosomal synteny between M. glyptostroboides and S. giganteum is extremely high, whereas there has been significant chromosome reorganization in S. sempervirens. Phylogenetic analysis of marker genes indicates that S. sempervirens is an autopolyploid, and more than 48% of the gene trees are incongruent with the species tree. Results of multiple analyses suggest that incomplete lineage sorting (ILS) rather than hybridization explains the inconsistent phylogeny, indicating that genetic variation among redwoods may be due to random retention of polymorphisms in ancestral populations. Functional analysis of ortholog groups indicates that gene families of ion channels, tannin biosynthesis enzymes, and transcription factors for meristem maintenance have expanded in S. giganteum and S. sempervirens, which is consistent with their extreme height. As a wetland-tolerant species, M. glyptostroboides shows a transcriptional response to flooding stress that is conserved with that of analyzed angiosperm species. Our study offers insights into redwood evolution and adaptation and provides genomic resources to aid in their conservation and management.


Assuntos
Sequoia , Sequoia/genética , Filogenia , Genômica
2.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090094

RESUMO

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

4.
J Anim Sci ; 99(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493272

RESUMO

Despite the broad variety of available microRNA (miRNA) research tools and methods, their application to the identification, annotation, and target prediction of miRNAs in nonmodel organisms is still limited. In this study, we collected nearly all public sRNA-seq data to improve the annotation for known miRNAs and identify novel miRNAs that have not been annotated in pigs (Sus scrofa). We newly annotated 210 mature sequences in known miRNAs and found that 43 of the known miRNA precursors were problematic due to redundant/missing annotations or incorrect sequences. We also predicted 811 novel miRNAs with high confidence, which was twice the current number of known miRNAs for pigs in miRBase. In addition, we proposed a correlation-based strategy to predict target genes for miRNAs by using a large amount of sRNA-seq and RNA-seq data. We found that the correlation-based strategy provided additional evidence of expression compared with traditional target prediction methods. The correlation-based strategy also identified the regulatory pairs that were controlled by nonbinding sites with a particular pattern, which provided abundant complementarity for studying the mechanism of miRNAs that regulate gene expression. In summary, our study improved the annotation of known miRNAs, identified a large number of novel miRNAs, and predicted target genes for all pig miRNAs by using massive public data. This large data-based strategy is also applicable for other nonmodel organisms with incomplete annotation information.


Assuntos
MicroRNAs , Animais , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , MicroRNAs/genética , Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...