Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 163: 114843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201261

RESUMO

Calcium-sensing receptor (CaSR) is a G protein-coupled receptor, widely distributed in various tissues, including vascular endothelial cells and smooth muscle cells, which plays an important role in the migration and homing of stem/progenitor cells and the proliferation of tissue cells. Restenosis after Percutaneous coronary intervention (PCI) seriously affects its prognosis and application. Our previous research has found that ginsenoside Rg1 (GS-Rg1) can inhibit the occurrence of restenosis after balloon injury of the common carotid artery in rats, but the mechanism is still unclear. In this study, it was found that GS-Rg1 (4, 8, 16 mg/kg) inhibited vascular restenosis caused by balloon injury, and mobilize endothelial progenitor cells (EPCs) to promote reendothelialization and inhibit intimal hyperplasia, which significantly reduced after administration of CaSR antagonist NPS 2143. Interestingly, CaSR and its downstream JNK, P38 were highly expressed in the proliferative intima and participated in the abnormal proliferation of vascular smooth muscle cells mediated by smooth muscle progenitor cells (SMPCs). GS-Rg1 inhibited intimal hyperplasia, while it decreased the expression of CaSR, JNK, and P38. This might relate to the distribution of CaSR and the facilitation of GS-Rg1 on the vascular endothelial repair. It is concluded that CaSR plays a key role in GS-Rg1 promoting reendothelialization to inhibit intimal hyperplasia after balloon Injury.


Assuntos
Células Progenitoras Endoteliais , Intervenção Coronária Percutânea , Ratos , Animais , Hiperplasia , Receptores de Detecção de Cálcio , Constrição Patológica
2.
J Ethnopharmacol ; 260: 113046, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504784

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey. is a traditional tonic that has been used for thousands of years, and has positive effects on vascular diseases. Ginsenoside Rg1 (GS-Rg1) is one of the active ingredients of Panax ginseng C. A. Mey. and has been shown to have beneficial effects against ischemia/reperfusion injury. Our previously study has found that GS-Rg1 can mobilize bone marrow stem cells and inhibit vascular smooth muscle proliferation and phenotype transformation. However, pharmacological effects and mechanism of GS-Rg1 in inhibiting intimal hyperplasia is still unknown. AIM OF THE STUDY: This study was aimed to investigate whether GS-Rg1 prevented vascular intimal hyperplasia, and the involvement of stromal cell-derived factor-1α (SDF-1α)/CXCR4, stem cell factor (SCF)/c-kit and fractalkine (FKN)/CX3CR1 axes. MATERIALS AND METHODS: Rats were operated with carotid artery balloon injury. The treatment groups were injected with 4, 8 and 16 mg/kg of GS-Rg1 for 14 days. The degree of intimal hyperplasia was evaluated by histopathological examination. The expression of α-SMA (α-smooth muscle actin) and CD133 were detected by double-label immunofluorescence. Serum levels of SDF-1α, SCF and soluble FKN (sFKN) were detected by enzyme linked immunosorbent assay (ELISA). The protein expressions of SCF, SDF-1α and FKN, as well as the receptors c-kit, CXC chemokine receptor type 4 (CXCR4) and CX3C chemokine receptor type 1 (CX3CR1) were detected by immunochemistry. RESULTS: GS-Rg1 reduced intimal hyperplasia by evidence of the values of NIA, the ratio of NIA/MA, and the ratio of NIA/IELA and the ratio of NIA/LA, especially in 16 mg/kg group. Furthermore, GS-Rg1 8 mg/kg group and 16 mg/kg group decreased the protein expressions of the SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes in neointima, meanwhile GS-Rg1 8 mg/kg group and 16 mg/kg group also attenuated the expressions of SDF-1α, SCF and sFKN in serum. In addition, the expression of α-SMA and CD133 marked smooth muscle progenitor cells (SMPCs) was decreased after GS-Rg1 treatment. CONCLUSIONS: GS-Rg1 has a positive effect on inhibiting vascular intimal hyperplasia, and the underlying mechanism is related to inhibitory expression of SDF-1α/CXCR4, SCF/c-kit and FKN/CX3CR1 axes.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Lesões das Artérias Carótidas/prevenção & controle , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL12/metabolismo , Ginsenosídeos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Neointima , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores CXCR4/metabolismo , Fator de Células-Tronco/metabolismo , Angioplastia com Balão , Animais , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Modelos Animais de Doenças , Hiperplasia , Masculino , Músculo Liso Vascular/lesões , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...