Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1235514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809066

RESUMO

Introduction: CD4+ T cells are critically involved in the pathogenesis of Rheumatoid Arthritis; an autoimmune disorder characterized by joint inflammation and bone degeneration. In this study, we focused on the critical role of cytokines, IL-21 and IL-23 in facilitating the aberrant status of RA Th17-like cells and report their significant contribution(s) in modulating the expression of inflammatory cytokines and RANKL. Methods: Blood and synovial fluid collected from a total of 167 RA patients and 25 healthy volunteers were assessed for various inflammatory markers and RANKL expression in plasma and CD4+ T cells. Subsequent ex vivo studies examined the role of specific cytokines, IL-21 and IL-23 in mediating inflammation and RANKL upregulation by blocking their expression with neutralizing antibodies in RA CD4+ T cells and terminally differentiated human Th17 cells. Further, the role of p-Akt1 as a signalling target downstream of IL-21 and IL-23 was evinced with IL-21 and IL-23 inhibition and phospho Akt-1/2 kinase inhibitor. Results: Our observations highlighted the augmented inflammatory cytokine levels in plasma and an aberrant CD4+ T cell phenotype expressing exaggerated inflammatory cytokines and membrane RANKL expression in RA as opposed to healthy controls. Neutralization of either IL-21 or IL-23 (p19 and p40) or both, resulted in downregulation of the cytokines, TNF-α, IFN-γ and IL-17 and RANKL expression in these cells, signifying the critical role of IL-21/23 axis in modulating inflammation and RANKL. Subsequent dissection of the signaling pathway found p-Akt1 as the key phosphoprotein downstream of both IL-21 and IL-23, capable of increasing inflammatory cytokines and RANKL production. Discussion: Our findings unequivocally identify IL-21/23 axis in RA CD4+ T cells as a key regulator dictating two critical processes i.e. exaggerated inflammation and higher RANKL expression and provide critical targets in their downstream signalling for therapeutic approaches.


Assuntos
Citocinas , Interleucina-17 , Humanos , Citocinas/metabolismo , Interleucina-17/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD4-Positivos , Transdução de Sinais , Interleucina-23/metabolismo , Inflamação/metabolismo
2.
J Med Virol ; 95(9): e29053, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37650214

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) infection has caused an increase in mortality and morbidity, but with vaccination, the disease severity has significantly reduced. With the emergence of various variants of concern (VOCs), the vaccine breakthrough infection has also increased. Here we studied circulating spike-specific T follicular response (cTfh) in infection-naïve vaccinees and convalescent vaccinees (individuals who got the Delta breakthrough infection after two doses of BBV152 vaccine) to understand their response as they are the most crucial cells that are involved in vaccine-mediated protection by helping in B-cell maturation. Our results indicated that cTfh cells in both the groups recognized the wild-type and Delta spike protein but memory response to the wild-type spike was superior in infection-naïve than in the convalescent group. The cytokine response, particularly interleukin-21 (IL-21) from cTfh, was also higher in infection-naïve than in convalescent vaccinees, indicating a dampened cTfh response in convalescent vaccinees after breakthrough infection. Also, there was a positive correlation between IL-21 from cTfh cells and neutralizing antibodies of infection-naïve vaccinees. Multiple cytokine analysis also revealed higher inflammation in convalescent vaccinees. Our data indicated that the necessity of a third booster dose may be individual-specific depending on the steady-state functional phenotype of immune cells.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , RNA Viral , SARS-CoV-2 , Células T Auxiliares Foliculares , Citocinas , Infecções Irruptivas
3.
Cureus ; 15(6): e40410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456404

RESUMO

BACKGROUND: In this study, we used the anatomic scoring system Abbreviated Injury Scale (AIS) to calculate the Injury Severity Score (ISS) and the physiological scoring system for the Revised Trauma Score (RTS) on the arrival of patients. Both scores were used to calculate the Trauma and Injury Severity Score (TRISS) for predicting the patient outcome in a case of trauma. METHODS: This prospective, cross-sectional, observational study was carried out at the trauma centre of a tertiary care institute and included patients of either sex, age ≥18 years, and ISS ≥15. A total of 2084 cases of trauma over a period of 18 months were assessed, and 96 cases of blunt trauma meeting the inclusion criteria were studied. RESULTS: Patients injured in road traffic accidents constituted the maximum caseload. Out of a sample size of 96 patients with ISS ≥15, 77 died during the treatment and 19 survived. The ISS ranged from 15 to 66, with a mean ± SD score of 27.48 ± 8.79. Non-survivors had a statistically higher significant ISS than survivors (p<0.001). The RTS ranged from <1 to 7.84, with a mean ± SD score of 4.52 ± 2.08. Non-survivors had low RTS (RTS <5, n=52) compared to survivors, and the difference was statistically significant (p<0.001). The mean ± SD TRISS (Ps) score was 0.69 ± 2.288. In the non-survivor (NS) group, 15 patients had TRISS (Ps) between 0.26-0.50, followed by 0.51-0.75 (n=18), 0.76-0.90 (n=12), and 0.90-0.95 (n=11). While 16 survivors had TRISS (Ps) between 0.96 and 1, a statistically significant association was found between TRISS and patient outcome (p-value <0.001). On the receiver operating characteristic (ROC) curve analysis, the sensitivity of TRISS (94.7%) and RTS was found to be comparable (94.7%), whereas ISS was less sensitive (36.8%) in predicting the patient outcome. RTS (79.2%) and TRISS (76.6%) scores were more specific than ISS (5.2%) for outcome analysis. CONCLUSION: The TRISS score is useful in the management of trauma patients as it can satisfactorily predict mortality in a case of trauma. The trauma scores are of immense help in determining the nature of injury in medicolegal cases.

4.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671045

RESUMO

Systemic lupus erythematous (SLE) is a chronic autoimmune disorder, broadly characterized by systemic inflammation along with heterogeneous clinical manifestations, severe morbidity, moribund organ failure and eventual mortality. In our study, SLE patients displayed a higher percentage of activated, inflamed and hyper-polarized CD8+ T cells, dysregulated CD8+ T cell differentiation, significantly elevated serum inflammatory cytokines and higher accumulation of cellular ROS when compared to healthy controls. Importantly, these hyper-inflammatory/hyper-polarized CD8+ T cells responded better to an antioxidant than to an oxidant. Terminally differentiated Tc1 cells also showed plasticity upon oxidant/antioxidant treatment, but that was in contrast to the SLE CD8+ T cell response. Our studies suggest that the differential phenotype and redox response of SLE CD8+ T cells and Tc1 cells could be attributed to their cytokine environs during their respective differentiation and eventual activation environs. The polarization of Tc1 cells with IL-21 drove hyper-cytotoxicity without hyper-polarisation suggesting that the SLE inflammatory cytokine environment could drive the extreme aberrancy in SLE CD8+ T cells.

5.
J Virol ; 96(20): e0082822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197108

RESUMO

Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.


Assuntos
Dengue , PPAR gama , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Proteínas Quinases/metabolismo , Citocinas/metabolismo , Inflamação/patologia , Dengue/patologia
6.
Front Immunol ; 13: 848335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572555

RESUMO

Background: SARS-CoV2 infection in patients with comorbidities, particularly T2DM, has been a major challenge globally and has been shown to be associated with high morbidity and mortality. Here, we did whole blood immunophenotyping along with plasma cytokine, chemokine, antibody isotyping, and viral load from oropharyngeal swab to understand the immune pathology in the T2DM patients infected with SARS-CoV2. Methods: Blood samples from 25 Covid-19 positive patients having T2DM, 10 Covid-19 positive patients not having T2DM, and 10 Covid-19 negative, non-diabetic healthy controls were assessed for various immune cells by analyzing for their signature surface proteins in mass cytometry. Circulating cytokines, chemokines, and antibody isotypes were determined from plasma while viral copy number was determined from oropharyngeal swabs. All our representative data corroborated with laboratory findings. Results: Our observations encompass T2DM patients having elevated levels of both type I and type II cytokines and higher levels of circulating IgA, IgM, IgG1, and IgG2 as compared to NDM and healthy volunteers. They also displayed higher percentages of granulocytes, mDCs, plasmablasts, Th2-like cells, CD4+ EM cells, and CD8+ TE cells as compared to healthy volunteers. T2DM patients also displayed lower percentages of pDCs, lymphocytes, CD8+ TE cells, CD4+, and CD8+ EM. Conclusion: Our study demonstrated that patients with T2DM displayed higher inflammatory markers and a dysregulated anti-viral and anti-inflammatory response when compared to NDM and healthy controls and the dysregulated immune response may be attributed to meta inflammation.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Quimiocinas , Citocinas , Humanos , RNA Viral , SARS-CoV-2
7.
Microb Pathog ; 162: 105326, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34863878

RESUMO

AIDS restriction genes (ARGs) like APOBEC3, TRIM5α, and BST2 can act as immunological detectors of the innate protective mechanism of the body. ARGs influence the course of viral pathogenesis and progression of the disease. The infection caused by different viruses including HIV activates the innate immune receptors leading to production of proinflammatory cytokines, interferons and signals that recruit and activate cells involved in the process of inflammation following induction of adaptive immunity. Differential expression of genes involved in viral infection decide the fate and subsequent susceptibility to infection and its clinical outcome. Nevertheless, comprehensive reports on the incidence of genetic polymorphism of APOBEC3s, TRIM5α, and BST-2 in the general population and its association with pathological conditions have not been described well. Therefore, the occurrence of APOBEC3, TRIM5α, and BST2 polymorphism in healthy individuals and its impact on HIV transmission was analyzed. We conducted an extensive search using the several databases including, EMBASE, PubMed (Medline), and Google Scholar. APOBEC3-D, -F, -G, and -H out of the seven human APOBEC3s, help in the control of viral infection. Amongst various restriction factors, TRIM5α and BST-2 also restrict the viral infection followed by the development of the disease. In the current review, a brief account of the polymorphism in the APOBEC3G, TRIM5α, and BST2 genes are explored among different populations along with the interaction of APOBEC3G with Vif protein. Furthermore, this review specifically focus on ARGs polymorphism (APOBEC3G, TRIM5α, and BST2) associated with HIV transmission.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Desaminases APOBEC , Antígenos CD/genética , Proteínas Ligadas por GPI/genética , Infecções por HIV/genética , Humanos , Polimorfismo Genético
8.
J Family Med Prim Care ; 11(11): 6801-6806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36993007

RESUMO

Background: Urinary tract infection (UTI) is a common infection in children with nephrotic syndrome (NS). Clinical experience suggests that childhood nephrotic syndrome is frequently diagnosed incorrectly and managed inadequately on the top of this existing UTI in the episode becomes an additive obstacle for the primary care physicians or pediatricians towards optimum management, leading to poor outcome. So, we have conducted this clinico- microbiological study of UTI in NS in children to provide the exact picture of UTI with NS so that the primary care providers can be helped in having high index of suspicion of this infection and knowing prevalent organisms and their antimicrobial sensitivity pattern. Aim: The aim of the study was to study clinical features and identify the responsible organisms with its drug sensitivity pattern with response to treatment in various types and stages of NS with UTI in children. Methods: This cross-sectional hospital based study was conducted on 50 children of 2-18 years of age with NS attending nephrology clinic or admitted to the Paediatric ward of AIIMS, Rishikesh. Demographic, clinical, and microbiological data were recorded and details were entered in a predesigned proforma sheet. Results: Out of 50 cases, 8 (16%) had a positive urine culture. Six (75%) out of them had first episode and two (25%) were frequent relapsers of NS. Fever, decreased urine output, and generalized edema were the presenting features. The most common bacteria responsible for UTI was Pseudomonas aeruginosa (in around 25% isolates). Escherichia coli and Citrobacter koseri were the most resistant organisms. Patients were treated with antibiotics according to sensitivity pattern which resulted in resolution of symptoms and repeat urine culture became sterile subsequently. Conclusion: About one-sixth of children with Nephrotic Syndrome had UTI. UTI should be ruled out in every case of NS in active phase to prevent long-term morbidity and mortality.

9.
Commun Biol ; 4(1): 1193, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654884

RESUMO

Curcuma longa, or turmeric, is traditionally known for its immense medicinal properties and has diverse therapeutic applications. However, the absence of a reference genome sequence is a limiting factor in understanding the genomic basis of the origin of its medicinal properties. In this study, we present the draft genome sequence of C. longa, belonging to Zingiberaceae plant family, constructed using 10x Genomics linked reads and Oxford Nanopore long reads. For comprehensive gene set prediction and for insights into its gene expression, transcriptome sequencing of leaf tissue was also performed. The draft genome assembly had a size of 1.02 Gbp with ~70% repetitive sequences, and contained 50,401 coding gene sequences. The phylogenetic position of C. longa was resolved through a comprehensive genome-wide analysis including 16 other plant species. Using 5,388 orthogroups, the comparative evolutionary analysis performed across 17 species including C. longa revealed evolution in genes associated with secondary metabolism, plant phytohormones signaling, and various biotic and abiotic stress tolerance responses. These mechanisms are crucial for perennial and rhizomatous plants such as C. longa for defense and environmental stress tolerance via production of secondary metabolites, which are associated with the wide range of medicinal properties in C. longa.


Assuntos
Mapeamento Cromossômico , Curcuma/genética , Plantas Medicinais/genética , Sequência de Bases , Curcuma/química , Extratos Vegetais/química , Sequências Repetitivas de Ácido Nucleico
10.
iScience ; 24(2): 102079, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33644713

RESUMO

Aloe vera is a species from Asphodelaceae family having characteristics like drought resistance and numerous medicinal properties. However, the genetic basis of these phenotypes is yet unknown primarily due to unavailability of its genome sequence. Thus, we report the first Aloe vera genome sequence comprising of 12.93 Gbp and harboring 86,177 protein-coding genes. It is the first genome from Asphodelaceae family and the largest angiosperm genome sequenced and assembled till date. We also report the first genome-wide phylogeny of monocots including Aloe vera to resolve its phylogenetic position. The comprehensive comparative analysis of Aloe vera with other available high-quality monocot genomes revealed adaptive evolution in several genes of drought stress response, CAM pathway, and circadian rhythm and positive selection in DNA damage response genes in Aloe vera. This study provides clues on the genetic basis of evolution of drought stress tolerance capabilities of Aloe vera.

11.
iScience ; 24(1): 101925, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33385118

RESUMO

In addition to being pivotal for the host health, the skin microbiome possesses a large reservoir of metabolic enzymes, which can metabolize molecules (cosmetics, medicines, pollutants, etc.) that form a major part of the skin exposome. Therefore, to predict the complete metabolism of any molecule by skin microbiome, a curated database of metabolic enzymes (1,094,153), reactions, and substrates from ∼900 bacterial species from 19 different skin sites were used to develop "SkinBug." It integrates machine learning, neural networks, and chemoinformatics methods, and displays a multiclass multilabel accuracy of up to 82.4% and binary accuracy of up to 90.0%. SkinBug predicts all possible metabolic reactions and associated enzymes, reaction centers, skin microbiome species harboring the enzyme, and the respective skin sites. Thus, SkinBug will be an indispensable tool to predict xenobiotic/biotic metabolism by skin microbiome and will find applications in exposome and microbiome studies, dermatology, and skin cancer research.

12.
Sci Rep ; 9(1): 18459, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804567

RESUMO

The availability of completed and draft genome assemblies of tiger, leopard, and other felids provides an opportunity to gain comparative insights on their unique evolutionary adaptations. However, genome-wide comparative analyses are susceptible to errors in genome sequences and thus require accurate genome assemblies for reliable evolutionary insights. In this study, while analyzing the tiger genome, we found almost one million erroneous substitutions in the coding and non-coding region of the genome affecting 4,472 genes, hence, biasing the current understanding of tiger evolution. Moreover, these errors produced several misleading observations in previous studies. Thus, to gain insights into the tiger evolution, we corrected the erroneous bases in the genome assembly and gene set of tiger using 'SeqBug' approach developed in this study. We sequenced the first Bengal tiger genome and transcriptome from India to validate these corrections. A comprehensive evolutionary analysis was performed using 10,920 orthologs from nine mammalian species including the corrected gene sets of tiger and leopard and using five different methods at three hierarchical levels, i.e. felids, Panthera, and tiger. The unique genetic changes in tiger revealed that the genes showing signatures of adaptation in tiger were enriched in development and neuronal functioning. Specifically, the genes belonging to the Notch signalling pathway, which is among the most conserved pathways involved in embryonic and neuronal development, were found to have significantly diverged in tiger in comparison to the other mammals. Our findings suggest the role of adaptive evolution in neuronal functions and development processes, which correlates well with the presence of exceptional traits such as sensory perception, strong neuro-muscular coordination, and hypercarnivorous behaviour in tiger.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma/genética , Anotação de Sequência Molecular , Tigres/genética , Animais , Variação Genética , Genômica , Masculino , Panthera/genética , Filogenia , Análise de Sequência de DNA , Transcriptoma/genética
13.
J Cell Biochem ; 120(7): 11206-11215, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30701587

RESUMO

The human gut harbors diverse bacterial species in the gut, which play an important role in the metabolism of food and host health. Recent studies have also revealed their role in altering the pharmacological properties and efficacy of oral drugs through promiscuous metabolism. However, the atomistic details of the enzyme-drug interactions of gut bacterial enzymes which can potentially carry out the metabolism of drug molecules are still scarce. A well-known example is the FDA drug amphetamine (a central nervous system stimulant), which has been predicted to undergo promiscuous metabolism by gut bacteria. Therefore, to understand the atomistic details and energy landscape of the gut microbial enzyme-mediated metabolism of this drug, molecular dynamics studies were performed. It was observed that amphetamine binds to tyramine oxidase from the Escherichia coli strain present in the human gut microbiota at the binding site harboring polar and nonpolar amino acids. The stability analysis of amphetamine at the binding site showed that the binding is stable and the free energy for the binding of amphetamine was found to be ~ -51.71 kJ/mol. The insights provided by this study on promiscuous metabolism of amphetamine by a gut enzyme will be very useful to improve the efficacy of the drug.

14.
Front Genet ; 9: 392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283495

RESUMO

The unique ornamental features and extreme sexual traits of Peacock have always intrigued scientists and naturalists for centuries. However, the genomic basis of these phenotypes are yet unknown. Here, we report the first genome sequence and comparative analysis of peacock with the high quality genomes of chicken, turkey, duck, flycatcher and zebra finch. Genes involved in early developmental pathways including TGF-ß, BMP, and Wnt signaling, which have been shown to be involved in feather patterning, bone morphogenesis, and skeletal muscle development, revealed signs of adaptive evolution and provided useful clues on the phenotypes of peacock. Innate and adaptive immune genes involved in complement system and T-cell response also showed signs of adaptive evolution in peacock suggesting their possible role in building a robust immune system which is consistent with the predictions of the Hamilton-Zuk hypothesis. This study provides novel genomic and evolutionary insights into the molecular understanding toward the phenotypic evolution of Indian peacock.

15.
J Cell Biochem ; 119(7): 5287-5296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29274283

RESUMO

The recent advances in microbiome studies have revealed the role of gut microbiota in altering the pharmacological properties of oral drugs, which contributes to patient-response variation and undesired effect of the drug molecule. These studies are essential to guide us for achieving the desired efficacy and pharmacological activity of the existing drug molecule or for discovering novel and more effective therapeutics. However, one of the main limitations is the lack of atomistic details on the binding and metabolism of these drug molecules by gut-microbial enzymes. Therefore, in this study, for a well-known and important FDA-approved cardiac glycoside drug, digoxin, we report the atomistic details and energy economics for its binding and metabolism by the Cgr2 protein of Eggerthella lenta DSM 2243. It was observed that the binding pocket of digoxin to Cgr2 primarily involved the negatively charged polar amino acids and a few non-polar hydrophobic residues. The drug digoxin was found to bind Cgr2 at the same binding site as that of fumarate, which is the proposed natural substrate. However, digoxin showed a much lower binding energy (17.75 ± 2 Kcal mol-1 ) than the binding energy (42.17 ± 2 Kcal mol-1 ) of fumarate. This study provides mechanistic insights into the structural and promiscuity-based metabolism of widely used cardiac drug digoxin and presents a methodology, which could be useful to confirm the promiscuity-based metabolism of other orally administrated drugs by gut microbial enzymes and also help in designing strategies for improving the efficacy of the drugs.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cardiotônicos/metabolismo , Digoxina/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Actinobacteria/isolamento & purificação , Sequência de Aminoácidos , Trato Gastrointestinal/enzimologia , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Homologia de Sequência
16.
Sci Rep ; 7(1): 9751, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852076

RESUMO

The human gut microbiota is constituted of a diverse group of microbial species harbouring an enormous metabolic potential, which can alter the metabolism of orally administered drugs leading to individual/population-specific differences in drug responses. Considering the large heterogeneous pool of human gut bacteria and their metabolic enzymes, investigation of species-specific contribution to xenobiotic/drug metabolism by experimental studies is a challenging task. Therefore, we have developed a novel computational approach to predict the metabolic enzymes and gut bacterial species, which can potentially carry out the biotransformation of a xenobiotic/drug molecule. A substrate database was constructed for metabolic enzymes from 491 available human gut bacteria. The structural properties (fingerprints) from these substrates were extracted and used for the development of random forest models, which displayed average accuracies of up to 98.61% and 93.25% on cross-validation and blind set, respectively. After the prediction of EC subclass, the specific metabolic enzyme (EC) is identified using a molecular similarity search. The performance was further evaluated on an independent set of FDA-approved drugs and other clinically important molecules. To our knowledge, this is the only available approach implemented as 'DrugBug' tool for the prediction of xenobiotic/drug metabolism by metabolic enzymes of human gut microbiota.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Enzimas/genética , Enzimas/metabolismo , Microbioma Gastrointestinal , Microbiota , Xenobióticos/metabolismo , Bactérias/classificação , Bactérias/genética , Biotransformação , Biologia Computacional/métodos , Humanos , Redes e Vias Metabólicas/genética
17.
Mol Biosyst ; 13(9): 1898-1911, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745372

RESUMO

Non-Alcoholic Fatty Liver Disease (NAFLD) is a complex spectrum of diseases ranging from simple steatosis to Non-Alcoholic Steatohepatitis (NASH) with fibrosis, which can progress to cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is complex, involving crosstalk between multiple organs, cell-types, and environmental and genetic factors. Dysfunction of the adipose tissue plays a central role in NAFLD progression. Here, we analysed transcriptomics data obtained from the Visceral Adipose Tissue (VAT) of NAFLD patients to understand how the VAT metabolism is altered at the genome scale and co-regulated with other cellular processes during the progression from obesity to NASH with fibrosis. For this purpose, we performed Weighted Gene Co-expression Network Analysis (WGCNA), a method that organizes the disease transcriptome into functional modules of cellular processes and pathways. Our analysis revealed the coordination of metabolic and inflammatory modules (termed "immunometabolism") in the VAT of NAFLD patients. We found that genes of arachidonic acid, sphingolipid and glycosphingolipid metabolism were upregulated and co-expressed with genes of proinflammatory signalling pathways and hypoxia in NASH/NASH with fibrosis. We hypothesize that these metabolic alterations might play a role in sustaining VAT inflammation. Furthermore, immunometabolism related genes were also co-expressed with genes involved in Extracellular Matrix (ECM) degradation. Our analysis indicates that upregulation of both ECM degrading enzymes and their inhibitors (incoherent feedforward loop) potentially leads to the ECM deposition in the VAT of NASH with fibrosis patients.


Assuntos
Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adipócitos , Tecido Adiposo/metabolismo , Biologia Computacional/métodos , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Redes e Vias Metabólicas , Hepatopatia Gordurosa não Alcoólica/patologia , Biologia de Sistemas/métodos
18.
Genome Announc ; 5(5)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153890

RESUMO

The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.

19.
Front Microbiol ; 7: 949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379078

RESUMO

Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...