Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016545

RESUMO

Mn3[Fe(CN)6]2 (MnHCF) selectively adsorbs methanol from water with a distribution coefficient of 11 mL g-1, which is 3-11 times that of activated carbons and zeolites. MnHCF exhibits an adsorption capacity of 0.36 mmol g-1 and can adsorb 1000 mg MeOH per L in aqueous solution, demonstrating its effectiveness for treating methanol-contaminated wastewater.

2.
ACS Appl Mater Interfaces ; 15(9): 11977-11982, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36792951

RESUMO

Conventional methanol recovery and purification processes are highly energy-intensive; processes using selective adsorbents that consume low energy are preferable. However, conventional adsorbents have low methanol selectivity under humid conditions. In this study, we develop a selective methanol adsorbent, manganese hexacyanocobaltate (MnHCC), which enables the efficient removal of methanol from waste gas and its subsequent reuse. MnHCC adsorbs 4.8 mmol-methanol/g-adsorbent at 25 °C in a humid gas containing 5000 ppmv of methanol, which is five times higher than the adsorption capacity of activated carbon (0.86 mmol/g). Although MnHCC exhibits the simultaneous adsorption of methanol and water, it has a higher adsorption enthalpy for methanol. Thus, pure methanol (95%) was recovered via thermal desorption at 150 °C after dehydration. The estimated energy of this recovery was 18.9 MJ/kg-methanol, approximately half that of existing mass production methods. MnHCC is reusable and stable even after 10 cyclic experiments. Consequently, MnHCC has the potential to contribute to both the recycling of methanol from waste gas and its low-cost purification.

3.
Chemistry ; 27(72): 18135-18140, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34741369

RESUMO

Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2 [ReN(CN)4 ] (1) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1. Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.

4.
Phys Chem Chem Phys ; 23(42): 24233-24238, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668901

RESUMO

The interlayer spaces in two dimensional (2D) layered materials such as graphene, metal oxides and metal chalcogenides can be used in a number of roles that include the trapping of gases, for ion transfer and for water purification applications. In such spaces, "inner" pressure occurs on guest species enclosed between the layers and its variation can, in principal, be used for precisely controlling particular guest properties. In this study, a mixture of two 2D materials including graphene oxide (GO) and nickel hydroxide (Ni(OH)2), was employed to yield an anisotropic GO-Ni(OH)2 hybrid 2D sheet. The inner pressure associated with this material was able to be tuned by reduction of the GO (to yield rGO) and this in turn was shown to affect the magnetic behaviour of Ni(OH)2. The ferromagnetic transition temperature (Tc) for Ni(OH)2 decreases as the interlayer distance became shorter, which is opposite to the behaviour observed for the application of hydrostatic pressure to the hybrid sheet. The uniaxial pressure affecting the interlayer of the 2D material, and generated by the reduction of GO to rGO, has the potential to not only influence the behaviour of a range of magnetic materials, but also individual properties of other types of functional materials.

5.
Nanoscale ; 13(10): 5530-5535, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688871

RESUMO

Bifunctional electrocatalytic properties of freeze-dried Ni/NiOx, freeze-dried NiO, and freeze-dried Ni(OH)2 are reported. Freeze-dried Ni(OH)2 was synthesized by the freeze-drying method. Freeze-dried Ni/NiOx and freeze-dried Ni were obtained from the thermal annealing of the material. Both Ni(OH)2 and Ni/NiOx could sustain with freestanding freeze-dried 3D structures without any carbon support. Freeze-dried Ni/NiOx exhibited excellent bifunctional electrocatalytic properties with the ORR performance at 0.62 V (half-wave potential) and OER at 1.47 V (η = 10 mA cm-2). Using freeze-dried metal hydroxides can be considered useful in a wide range of carbon-free applications and can improve the electrocatalytic performance. The bifunctional catalytic activities were calculated to be 0.86, 0.98 and 1.14 V for freeze-dried Ni/NiOx, freeze-dried NiO and freeze-dried Ni(OH)2, respectively. The stacking of 2D sheets into 3D mass seemed to play a vital role behind this excellent bifunctionality of freeze-dried Ni/NiOx. The material reveals possible applications in Zn-air batteries. Besides, the strategy developed herein could be justified to obtain other transition metal-oriented bifunctional electrocatalysts as alternatives to Pt- and Ir/Ru-based expensive benchmark catalysts.

6.
Chem Commun (Camb) ; 56(31): 4364-4367, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32195490

RESUMO

Ion conduction through graphene oxide (GO) nanosheets that is pH-switchable between H+ (in acid) and OH- (in base) ions is demonstrated. This finding is the first observation of this type for ion conductive materials and demonstrates an example of stimuli-driven ion-conduction switching.

7.
Sci Rep ; 8(1): 17392, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478376

RESUMO

Chlorine on graphene (G) matrices was doped by pulsed plasma stimulation on graphite electrode submerged in organochlorine solvents (CH2Cl2, CHCl3, CCl4). The study of work function by Kelvin probe force microscopy (KPFM) measurement clearly indicates that Cl-doped G behave like semiconductor and GG@CHCl3 exhibits the lowest value for the work function. We propose that this report not only represents a new route for tuning the semiconductivity of G but also indicates that doping level of halogen on G based carbon framework can be controlled by pulsed plasma treatment of carbon materials on various organohalogen derivatives.

8.
Glob Chall ; 1(6): 1700054, 2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31565285

RESUMO

Graphene oxide (GO) shows high proton conductivity (≈10-4 Scm-1), excellent mechanical stability, and electrical insulation property, which makes it an ideal candidate for use as a proton conducting solid state electrolyte. The prospects of using GO as single phase solid electrolyte in an all solid battery is presented herein. A battery with the cell configuration: Zn + ZnSO4•7H2O + graphite (anode) || GO (electrolyte) || MnO2 + graphite (cathode) is fabricated. Cyclic voltammetry confirms its rechargeable nature. The respective discharge capacity and power density of the cell are 360 µAh and 19.5 mW kg-1 at a constant current drain of 3 µA under the experimental conditions employed. GO based proton conductors are cleaner and cheaper than other solid electrolytes. The current study strongly suggests that GO can be used as a practical and beneficial component in solid state battery applications with low energy feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...