Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3649-3659, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38728425

RESUMO

Recently, different alternative regulated cell death (RCD) pathways, viz., necroptosis, pyroptosis, ferroptosis, cuproptosis etc., have been explored as important targets for the development of cancer medications in recent years, as these can change the immunogenicity of the tumor microenvironment (TME) and will finally lead to the inhibition of cancer progression and metastasis. Here, we report the development of transferrin immobilized graphene oxide (Tfn@GOAPTES) nanocomposite as a therapeutic strategy toward cancer cell killing. The electrostatic immobilization of Tfn on the GOAPTES surface was confirmed by different spectroscopy and microscopy techniques. The Tfn immobilization was found to be ∼74 ± 4%, whereas the stability of the protein on the GO surface suggested a robust nature of the nanocomposite. The MTT assay suggested that Tfn@GOAPTES exhibited cytotoxicity toward HeLa cells via increased lipid peroxidation and DNA damage. Western blot studies resulted in decreased expression of acetylation on lysine 40 of α-tubulin and increased expression of LC3a/b for Tfn@GOAPTES treated HeLa cells, suggesting autophagy to be the main cause of the cell death mechanism. Overall, we predict that the present approach can be used as a therapeutic strategy for cancer cell killing via selective induction of a high concentration of intracellular iron.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Grafite , Nanocompostos , Transferrina , Grafite/química , Grafite/farmacologia , Humanos , Nanocompostos/química , Transferrina/química , Transferrina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HeLa , Tamanho da Partícula , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ferro/química , Ferro/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Int J Biol Macromol ; 266(Pt 1): 131108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531523

RESUMO

Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.


Assuntos
Autofagia , Celulose , Diosgenina , Mitocôndrias , Agregados Proteicos , Humanos , Autofagia/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Diosgenina/farmacologia , Diosgenina/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Agregados Proteicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células HEK293 , Morte Celular/efeitos dos fármacos , Muramidase/metabolismo , Muramidase/química , Animais , Nanopartículas/química , Portadores de Fármacos/química , Regulação para Cima/efeitos dos fármacos
3.
Colloids Surf B Biointerfaces ; 232: 113583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844474

RESUMO

Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Nanoestruturas/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Diagnóstico por Imagem/métodos , Corantes Fluorescentes , Bactérias , Biofilmes
4.
Int J Biol Macromol ; 253(Pt 2): 126821, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690655

RESUMO

Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.


Assuntos
Nanoestruturas , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Nanotecnologia/métodos , Barreira Hematoencefálica/metabolismo , Transporte Biológico
5.
Int J Biol Macromol ; 233: 123466, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739044

RESUMO

Developing metal-free carbon nanozyme for tumor hypoxia is difficult. In biomedical applications, especially in the case of biomolecular detection, extensive research has been done on nanozymes with enzyme-mimicking catalytic activity. However, there are considerably fewer investigations on targeted nano-catalytic tumor therapy. Nano catalytic medicine-enabled chemotherapy is a safe and promising treatment strategy that involves the conversion of excess H2O2 into O2 in a tumor environment. Here we have synthesized carbon nanosphere (CNS) using the Camellia sinensis plant (CS-CNS). Further surface functionalization was achieved via nitrilotriacetic acid conjugation (NTA@CS-CNS). A stability study of synthesized nanozyme in the presence of various cations, anions, and 5 different pH range suggested the robustness of carbon based nanoassembly. The catalytic in vitro study shows that NTA@CS-CNS mimics peroxidase and catalase using TMB and H2O2 as substrates. NTA@CS-CNS showed Km and Vmax values of ~ 193.2 µM and 0.43 µM/s, ~ 413 µM and 1.42 µM/s, and ~ 378 µM and 1.63 µM/s, respectively when H2O2 and TMB was used for CAT and POD activity. Results showed that NTA@CS-CNS in combination with SFN and laser irradiation reduces hypoxia. Hence, our study could pave the path for the development of different non-toxic nano catalytic therapy for tumors in cancerous cells.


Assuntos
Nanosferas , Neoplasias , Humanos , Peróxido de Hidrogênio/química , Carbono/química , Neoplasias/tratamento farmacológico , Hipóxia
6.
ACS Appl Bio Mater ; 6(1): 117-125, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36503255

RESUMO

With the continuous growth in world population and economy, the global energy demand is increasing rapidly. Given that non-renewable energy sources will eventually deplete, there is increasing need for clean, alternative renewable energy sources, which will be inexpensive and involve minimum risk of environmental pollution. In this paper, harnessing the activity of cupric reductase NDH-2 enzyme present in Escherichia coli bacterial cells, we demonstrate a simple and efficient energy harvesting strategy within an electrochemical chamber without the requirement of any external fuels or force fields. The transduction of energy has been demonstrated with various strains of E. coli, indicating that this strategy could, in principle, be applicable for other microbial catalytic systems. We offer a simple mechanism of the energy transduction process considering the bacterial enzyme-mediated redox reaction occurring over the working electrode of the electrochemical cell. Also, the amount of energy generated has been found to be depending on the motility of bacteria within the experimental chamber, suggesting possible opportunities for developing microbial motility-controlled small scale power generators. Finally, we show that the Faradaic electrochemical energy harvested is large enough to power a commercial light emitting diode connected to an amplifier circuit. We expect the present study to generate sufficient interest within soft condensed matter and biophysics communities, and offer useful platforms for controlled energy generation at the small scales.


Assuntos
Bactérias , Escherichia coli , Oxirredução
7.
Free Radic Biol Med ; 193(Pt 1): 238-252, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257485

RESUMO

Mitochondrial dysfunction has been reported to be one of the main causes of many diseases including cancer, type2 diabetes, neurodegenerative disorders, cardiac ischemia, sepsis, muscular dystrophy, etc. Under in vitro conditions, Cytochrome C (Cyt C) maintains mitochondrial homeostasis and stimulates apoptosis, along with being a key participant in the life-supporting function of ATP synthesis. Hence, the medicinal importance of Cyt C as catalytic defense is immensely important in various mitochondrial disorders. Here, we have developed a nanomaterial via electrostatically conjugating oxidized single-wall carbon nanotube with Cyt C (Cyt C@cSWCNT) for the exogenous delivery of Cyt C. The chemical and morphological characterization of the developed Cyt C@cSWCNT was done using UV-vis, FTIR, XPS, powder XRD, TGA/DSC, TEM, etc. The developed Cyt C@cSWCNT exhibited bifunctional catalase and peroxidase activity with Km (∼ 642.7 µM and 351.6 µM) and Vmax (∼0.33 µM/s and 2.62 µM/s) values, respectively. Also, through this conjugation Cyt C was found to retain its catalytic activity even at 60 °C, excellent catalytic recyclability (at least up to 3 times), and wider pH activity (pH = 3 to 9). Cyt C@cSWCNT was found to promote intracellular ROS quenching and maintain mitochondrial membrane potential and cellular membrane integrity via Na+/K+ ion homeostasis during the H2O2 stress. Overall the present strategy provides an alternative approach for the exogenous delivery of Cyt C which can be used as nano catalytic medicine.


Assuntos
Citocromos c , Nanotubos de Carbono , Humanos , Citocromos c/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
8.
ACS Appl Mater Interfaces ; 13(13): 15040-15052, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769785

RESUMO

Development of metal-free, recyclable enzyme mimics is challenging and requires key chemical modifications at the molecular level. Here, nitrilotriacetic acid-functionalized carbon nanospheres (LC-CNS@NTA) were prepared from the nitrogen-rich weed Lantana camara (LC) using a simple hydrothermal reaction condition. Transmission electron microscopy (TEM) studies revealed size of ∼160 ± 20 nm for LC-CNS@NTA whereas, the same showed fluorescence emission at ∼520 nm with a ∼63% quantum yield. Furthermore, LC-CNS@NTA showed strong peroxidase (Pxrd) activity toward a wide range of substrate viz., H2O2, 3,3',5,5'-tetramethylbenzidine, and o-phenylenediamine with Km and Vmax values of ∼257 µM and 1.06 µM/s, 282 µM and 1.47 µM/s, and 270.8 µM and 1.647 µM/s, respectively. Interestingly, this also showed catalase (CAT) activity against H2O2 with Km and Vmax values of ∼0.374 µM and 1.87 µM/s, respectively. It was observed that LC-CNS@NTA could effectively reduce the oxidative stress-induced cytotoxicity of HEK293 cells via retention of mitochondrial membrane potential, prevention of lipid peroxidation and DNA damage. It was further found that LC-CNS@NTA-treated cells showed reduced level of intracellular protein carbonylation and protein aggregation. The finding of the present study is expected to pave the path for designing engineered metal-free carbon nanozyme with dual enzyme mimic activity.


Assuntos
Materiais Biomiméticos/farmacologia , Carbono/farmacologia , Ácido Nitrilotriacético/farmacologia , Materiais Biomiméticos/química , Carbono/química , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Lantana/química , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanosferas/química , Ácido Nitrilotriacético/química , Estresse Oxidativo/efeitos dos fármacos
9.
ACS Biomater Sci Eng ; 5(4): 1987-2000, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405519

RESUMO

The development of biocompatible, widely applicable fluorescent imaging probe, with emission beyond the cellular and tissue autofluorescence interference, is a challenging task. In this regard, a series of 28 different fluorescent carbon dots (CDs) were synthesized using carbohydrates as carbon and cysteine (Cys) and o-phenylenediamine (OPD) as nitrogen source. The screened CDs showed photostability with bright blue (∼505-520 nm) and red (∼588-596 nm) emission and high fluorescence quantum yield (QY = 72.5 ± 4.5%). FTIR and NMR studies suggested presence of carboxylate and ester group for Cys- and OPD-based CDs, respectively. HRTEM results showed particle size of ∼3.3-5.8 nm for all the developed CDs. The antibacterial studies suggested that the developed CDs showed preferential antibacterial activity against Escherichia coli, with IC50 value of ∼200 µg/mL. Cytotoxicity and confocal microscopy studies of HeLa cells reflected that these CDs showed both anticancer activity and imaging ability. Agarose gel electrophoresis, together with SOSG assay and thiol estimation studies, suggested oxidative stress induced DNA degradation to be the primary cause for cell death. These hemocompatible CDs can thus be used as simultaneous imaging probe and photo dynamic therapeutic agent for both antibacterial and anticancer activity.

10.
J Nanosci Nanotechnol ; 19(4): 1889-1907, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486930

RESUMO

In the modern era, research on the synthesis of nanoparticles (NPs) has been growing exponentially. Due to their small size together with extra-ordinary physico-chemical properties, a variety of NPs i.e., metallic, carbon-based, fluorescent, and polymer-based have been exploited in different fields such as tissue engineering, drug delivery, and various other therapeutic applications. Instead of multi-disciplinary applications of NPs, research dealing with the toxicity concerns and influence of such materials, on the public health, plants and environment is still in its infancy. NPs can cause damage at the cellular, sub-cellular, molecular and protein levels owing to their extremely small size, large surface area to volume ratio, shape, and surface functionality. The present review is aimed to provide wide-ranging information related to NPs toxicology, the mechanisms of action, routes of their entry into the body and probable impacts on human health. Understanding of NPs entry routes into the body entails further research so as to update policymakers and regulatory bodies about the toxicity concerns associated with these nanomaterials. Proper characterization of NPs, factors affecting uptake and toxicity of NPs, as well as an understanding of processes when NPs come in contact with living beings, is critical to estimate the possible hazards.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros
11.
Asian J Neurosurg ; 8(4): 174-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24551000

RESUMO

OBJECTIVE: We evaluated the role of screening of the whole spine by sagittal magnetic resonance imaging (MRI) along with MR myelography in early detection and management of occult intrasacral meningocele. MATERIALS AND METHODS: A prospective and retrospective analysis of MRI and MR myelography studies of the whole spine over a period of one year was performed. RESULTS: Thirty cases with sacral meningeal cysts were seen. On MRI, six patients (three males, three females) fulfilled the criterion of occult intrasacral meningocele. These patients showed a cyst of cerebrospinal fluid (CSF) signal intensity in the sacral canal below the dural sac. This cyst communicated with the thecal sac through a narrow pedicle. Fat signal intensity in the filum terminale and occult sacral dysraphism in the form of an absent or hypoplastic neural arch was observed in all the patients. Low-lying conus medullaris with thick filum terminale was seen in five of these six patients. Excision of the cyst with the release of filum was performed in two patients with a favorable outcome. CONCLUSION: Screening MRI with MR myelography of the whole spine may play a role in the early detection and management of occult intrasacral meningocele. The commonly associated thick filum terminale and low-lying conus medullaris may be missed otherwise that may lead to a progression of symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...