Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(6): e202400329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590163

RESUMO

The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Sein-E-B) nanocomposite photocatalysts in this work. The Sein-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light. The synthesized samples were subjected to UV-DRS-visible spectroscopy, FT-IR, SEM, EDX, EIS and XRD analysis. The energy band gap of the Sein-E-B nanocomposite photocatalyst was measured using UV-DRS, and the result was around 2.06 eV. to investigate the generated Sein-E-B catalytic activity as a nanocomposite for 1,4-NADH/NADPH re-formation and C-N bond activation. This novel photocatalyst offers a promising alternative for the regeneration of solar chemicals and C-N bond creation between pyrrole and aryl halides.


Assuntos
Nanocompostos , Catálise , Estrutura Molecular , Nanocompostos/química , Processos Fotoquímicos , Selênio/química
2.
Photochem Photobiol ; 100(1): 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37458262

RESUMO

Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.


Assuntos
Aloe , Grafite , Fenazinas , NAD/metabolismo , Amônia , Aloe/metabolismo , Fotossíntese
3.
Photochem Photobiol ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054563

RESUMO

Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S8 ) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD+ /NADP+ and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...