Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 13: 985402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311124

RESUMO

Coleoptile is the small conical, short-lived, sheath-like organ that safeguards the first leaf and shoot apex in cereals. It is also the first leaf-like organ to senesce that provides nutrition to the developing shoot and is, therefore, believed to play a crucial role in seedling establishment in rice and other grasses. Though histochemical studies have helped in understanding the pattern of cell death in senescing rice coleoptiles, genome-wide expression changes during coleoptile senescence have not yet been explored. With an aim to investigate the gene regulation underlying the coleoptile senescence (CS), we performed a combinatorial whole genome expression analysis by sequencing transcriptome and miRNAome of senescing coleoptiles. Transcriptome analysis revealed extensive reprogramming of 3439 genes belonging to several categories, the most prominent of which encoded for transporters, transcription factors (TFs), signaling components, cell wall organization enzymes, redox homeostasis, stress response and hormone metabolism. Small RNA sequencing identified 41 known and 21 novel miRNAs that were differentially expressed during CS. Comparison of gene expression and miRNA profiles generated for CS with publicly available leaf senescence (LS) datasets revealed that the two aging programs are remarkably distinct at molecular level in rice. Integration of expression data of transcriptome and miRNAome identified high confidence 140 miRNA-mRNA pairs forming 42 modules, thereby demonstrating multi-tiered regulation of CS. The present study has generated a comprehensive resource of the molecular networks that enrich our understanding of the fundamental pathways regulating coleoptile senescence in rice.

3.
Plant Genome ; 15(3): e20234, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35762493

RESUMO

Black gram [Vigna mungo (L.) Hepper var. mungo] is a warm-season legume highly prized for its protein content along with significant folate and iron proportions. To expedite the genetic enhancement of black gram, a high-quality draft genome from the center of origin of the crop is indispensable. Here, we established a draft genome sequence of an Indian black gram cultivar, 'Uttara' (IPU 94-1), known for its high resistance to mungbean yellow mosaic virus. Pacific Biosciences of California, Inc. (PacBio) single-molecule real-time (SMRT) and Illumina sequencing assembled a draft reference-guided assembly with a cumulative size of ∼454.4 Mb, of which, 444.4 Mb was anchored on 11 pseudomolecules corresponding to 11 chromosomes. Uttara assembly denotes features of a high-quality draft genome illustrated through high N50 value (42.88 Mb), gene completeness (benchmarking universal single-copy ortholog [BUSCO] score 94.17%) and low levels of ambiguous nucleotides (N) percent (0.0005%). Gene discovery using transcript evidence predicted 28,881 protein-coding genes, from which, ∼95% were functionally annotated. A global survey of genes associated with disease resistance revealed 119 nucleotide binding site-leucine rich repeat (NBS-LRR) proteins, while 23 genes encoding seed storage proteins (SSPs) were discovered in black gram. A large set of microsatellite loci were discovered for marker development in the crop. Our draft genome of an Indian black gram provides the foundational genomic resources for the improvement of important agronomic traits and ultimately will help in accelerating black gram breeding programs.


Assuntos
Vigna , Resistência à Doença/genética , Ácido Fólico , Ferro , Leucina/genética , Nucleotídeos , Melhoramento Vegetal , Proteínas de Armazenamento de Sementes/genética , Análise de Sequência de DNA , Vigna/genética
4.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671736

RESUMO

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani's pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


Assuntos
Rhizoctonia/genética , Rhizoctonia/patogenicidade , China , Elementos de DNA Transponíveis , Enzimas/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genômica , Malásia , Doenças das Plantas/microbiologia , Sinais Direcionadores de Proteínas/genética , Rhizoctonia/fisiologia , Sintenia
5.
Front Immunol ; 11: 529614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101270

RESUMO

The natural cysteine to serine variation at position 31 of Tat in HIV-1C disrupts the dicysteine motif attenuating the chemokine function of Tat. We ask if there exists a trade-off in terms of a gain of function for HIV-1C Tat due to this natural variation. We constructed two Tat-expression vectors encoding Tat proteins discordant for the serine 31 residue (CS-Tat vs. CC-Tat), expressed the proteins in Jurkat cells under doxycycline control, and performed the whole transcriptome analysis to compare the early events of Tat-induced host gene expression. Our analysis delineated a significant enrichment of pathways and gene ontologies associated with the angiogenic signaling events in CS-Tat stable cells. Subsequently, we validated and compared angiogenic signaling events induced by CS- vs. CC-Tat using human umbilical vein endothelial cells (HUVEC) and the human cerebral microvascular endothelial cell line (hCMEC/D3). CS-Tat significantly enhanced the production of CCL2 from HUVEC and induced an activated phenotype in endothelial cells conferring on them enhanced migration, invasion, and in vitro morphogenesis potential. The ability of CS-Tat to induce the activated phenotype in endothelial cells could be of significance, especially in the context of HIV-associated cardiovascular and neuronal disorders. The findings from the present study are likely to help appreciate the functional significance of the SAR (signature amino acid residues) influencing the unique biological properties.


Assuntos
Quimiocina CCL2/imunologia , HIV-1/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Quimiocina CCL2/genética , HIV-1/genética , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Células Jurkat , Serina/genética , Serina/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
6.
3 Biotech ; 10(8): 360, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832322

RESUMO

Plant-parasitic root-knot nematode Meloidogyne incognita uses an array of effector proteins to establish successful plant infections. Mi-msp-1 and Mi-msp-20 are two known effectors secreted from nematode subventral oesophageal glands; Mi-msp-1 being a putative secretory venom allergen AG5-like protein, whereas Mi-msp-20 is a pioneer gene with a coiled-coil motif. Expression of specific effector is known to cause disturbances in the expression of other effectors. Here, we used RNA-Seq to investigate the pleiotropic effects of silencing Mi-msp-1 and Mi-msp-20. A total of 25.1-51.9 million HQ reads generated from Mi-msp-1 and Mi-msp-20 silenced second-stage juveniles (J2s) along with freshly hatched J2s were mapped to an already annotated M. incognita proteome to understand the impact on various nematode pathways. As compared to control, silencing of Mi-msp-1 caused differential expression of 29 transcripts, while Mi-msp-20 silencing resulted in differential expression of a broader set of 409 transcripts. In the Mi-msp-1 silenced J2s, cytoplasm (GO:0005737) was the most enriched gene ontology (GO) term, whereas in the Mi-msp-20 silenced worms, embryo development (GO:0009792), reproduction (GO:0000003) and nematode larval development (GO:0002119) were the most enriched terms. Limited crosstalk was observed between these two effectors as a sheer 5.9% of the up-regulated transcripts were common between Mi-msp-1 and Mi-msp-20 silenced nematodes. Our results suggest that in addition to the direct knock-down caused by silencing of Mi-msp-1 and Mi-msp-20, the cascading effect on other genes might also be contributing to a reduction in nematode's parasitic abilities.

7.
Int J Parasitol ; 49(13-14): 1061-1073, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31733196

RESUMO

Meloidogyne incognita is a polyphagous plant-parasitic nematode that causes considerable yield loss in agricultural and horticultural crops. The management options available for M. incognita are extremely limited. Here we identified and characterised a M. incognita homolog of Caenorhabditis elegans sterol-binding protein (Mi-SBP-1), a transcriptional regulator of several lipogenesis pathway genes, and used RNA interference-mediated gene silencing to establish its utility as a target for the management of M. incognita. Mi-sbp-1 is predicted to be a helix-loop-helix domain containing DNA binding transcription factor, and is present in the M. incognita genome in three copies. The RNA-Seq analysis of Mi-sbp-1 silenced second stage juveniles confirmed the key role of this gene in lipogenesis regulation in M. incognita. In vitro and host-induced gene silencing of Mi-sbp-1 in M. incognita second stage juveniles resulted in loss of nematodes' ability to utilise the stored fat reserves, slower nematode development, and reduced parasitism on adzuki bean and tobacco plants. The multiplication factor for the Mi-sbp-1 silenced nematodes on adzuki bean plants was reduced by 51% compared with the control nematodes in which Mi-sbp-1 was not silenced. Transgenic expression of the double-stranded RNA construct of the Mi-sbp-1 gene in tobacco plants caused 40-45% reduction in M. incognita multiplication, 30-43.8% reduction in the number of egg masses, and 33-54% reduction in the number of eggs per egg mass compared with the wild type control plants. Our results confirm that Mi-sbp-1 is a key regulator of lipogenesis in M. incognita and suggest that it can be used as an effective target for its management. The findings of this study can be extended to develop methods to manage other economically important parasitic nematodes.


Assuntos
Lipogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tylenchoidea/enzimologia , Tylenchoidea/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Inativação Gênica , Doenças das Plantas/parasitologia , Nicotiana/parasitologia , Resultado do Tratamento , Tylenchoidea/crescimento & desenvolvimento , Vigna/parasitologia
8.
J Nematol ; 50(2): 111-116, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451432

RESUMO

The rice root-knot nematode Meloidogyne graminicola has emerged as a devastating pest of rice in South-East Asian countries. Here we present a draft genome sequence for M. graminicola , assembled using data from short and long insert libraries sequenced on Illumina GAIIx sequencing platform.

9.
Data Brief ; 19: 1073-1079, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30228995

RESUMO

Root-knot nematodes are devastating pathogens of crop plants. The draft genome of southern root-knot nematode Meloidogyne incognita was published in 2008 and additional genome and transcriptome data became available later on. However, lack of a publically available annotation for M. incognita genome and transcriptome(s) limits the use of this data for functional and comparative genomics by the interested researchers. Here we present a comprehensive annotation for the M. incognita proteome data available at INRA Meloidogyne Genomic Resources page (https://meloidogyne.inra.fr/Downloads/Meloidogyne-incognita-V2-2017) and European Nucleotide Archive (ENA) (accession number: ERP009887) using a multi-pronged approach.

10.
Genom Data ; 3: 8-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484141

RESUMO

The role of Mithramycin as an anticancer drug has been well studied. Sarcoma is a type of cancer arising from cells of mesenchymal origin. Though incidence of sarcoma is not of significant percentage, it becomes vital to understand the role of Mithramycin in controlling tumor progression of sarcoma. In this article, we have analyzed the global gene expression profile changes induced by Mithramycin in two different sarcoma lines from whole genome gene expression profiling microarray data. We have found that the primary mode of action of Mithramycin is by global repression of key cellular processes and gene families like phosphoproteins, kinases, alternative splicing, regulation of transcription, DNA binding, regulation of histone acetylation, negative regulation of gene expression, chromosome organization or chromatin assembly and cytoskeleton.

11.
Genom Data ; 5: 352-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26484285

RESUMO

Advent of Next Generation Sequencing has led to possibilities of de novo transcriptome assembly of organisms without availability of complete genome sequence. Among various sequencing platforms available, Illumina is the most widely used platform based on data quality, quantity and cost. Various de novo transcriptome assemblers are also available today for construction of de novo transcriptome. In this study, we aimed at obtaining an ameliorated de novo transcriptome assembly with sequence reads obtained from Illumina platform and assembled using Trinity Assembler. We found that, primary transcriptome assembly obtained as a result of Trinity can be ameliorated on the basis of transcript length, coverage, and depth and protein homology. Our approach to ameliorate is reproducible and could enhance the sensitivity and specificity of the assembled transcriptome which could be critical for validation of the assembled transcripts and for planning various downstream biological assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...