Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672997

RESUMO

Coronary artery disease (CAD) is often associated with the older generation. However, in recent years, there is an increasing trend in the prevalence of CAD among the younger population; this is known as premature CAD. Although biomarkers for CAD have been established, there are limited studies focusing on premature CAD especially among the Malay male population. Thus, the aim of this research was to compare the biomarkers between premature CAD (PCAD) and older CAD (OCAD) among Malay males. Subjects, recruited from the Universiti Kebangsaan Malaysia Medical Centre and National Heart Institution, were divided into four groups: healthy control < 45 years old; premature CAD (PCAD) < 45 years old; healthy control > 60 years old; and older CAD (OCAD) > 60 years old, with n = 30 for each group. Ten potential markers for CAD including soluble sVCAM-1, sICAM-1, interleukin-2, interleukin-6, interleukin-10, Apo-E and Apo-A1, homocysteine, CRP, and vitamin D levels were examined. Our results revealed premature CAD patients had significantly higher values (p < 0.05) of sVCAM-1, CRP, interleukin-6, and vitamin D when compared to the age-matched controls. Similarly, older CAD patients showed higher levels of sVCAM-1, CRP, and interleukin-2 when compared to their age-matched controls. After adjusting for multiple parameters, only CRP remained significant for PCAD and interleukin-2 remained significant for CAD. This indicates that premature CAD and older CAD patients showed different profiles of protein biomarkers. CRP has the potential to become a biomarker for premature CAD while interleukin-2 is a better biomarker for older CAD together with other typical panels of protein biomarkers.

2.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298039

RESUMO

Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...