Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(8): 9945-9962, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715940

RESUMO

The ability to see around corners, i.e., recover details of a hidden scene from its reflections in the surrounding environment, is of considerable interest in a wide range of applications. However, the diffuse nature of light reflected from typical surfaces leads to mixing of spatial information in the collected light, precluding useful scene reconstruction. Here, we employ a computational imaging technique that opportunistically exploits the presence of occluding objects, which obstruct probe-light propagation in the hidden scene, to undo the mixing and greatly improve scene recovery. Importantly, our technique obviates the need for the ultrafast time-of-flight measurements employed by most previous approaches to hidden-scene imaging. Moreover, it does so in a photon-efficient manner (i.e., it only requires a small number of photon detections) based on an accurate forward model and a computational algorithm that, together, respect the physics of three-bounce light propagation and single-photon detection. Using our methodology, we demonstrate reconstruction of hidden-surface reflectivity patterns in a meter-scale environment from non-time-resolved measurements. Ultimately, our technique represents an instance of a rich and promising new imaging modality with important potential implications for imaging science.

2.
Opt Express ; 21(11): 13145-61, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736568

RESUMO

We introduce an efficient and accurate nonlinear compensator (NLC) for digital back-propagation (DBP) of coherent optical OFDM receivers, based on a factorization procedure for the Volterra Series Transfer Function (VSTF) with 3N degrees of freedom for N frequency samples. The O(N2) nonlinear compensation complexity of generic Volterra evaluation (normalized per-subcarrier) is reduced to 28 + 6logN. Our analysis and simulations indicate that this NLC system outperforms previous VSTF-based non-linear compensation methods. Compared to a most recent VSTF-based method, the new method incurs 52% extra computational complexity in return for improved nonlinear tolerance of ~2 dB for the particular analyzed link.

3.
Opt Express ; 20(27): 29035-62, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263143

RESUMO

We present an efficient method for system identification (nonlinear channel estimation) of third order nonlinear Volterra Series Transfer Function (VSTF) characterizing the four-wave-mixing nonlinear process over a coherent OFDM fiber link. Despite the seemingly large number of degrees of freedom in the VSTF (cubic in the number of frequency points) we identified a compressed VSTF representation which does not entail loss of information. Additional slightly lossy compression may be obtained by discarding very low power VSTF coefficients associated with regions of destructive interference in the FWM phased array effect. Based on this two-staged VSTF compressed representation, we develop a robust and efficient algorithm of nonlinear system identification (optical performance monitoring) estimating the VSTF by transmission of an extended training sequence over the OFDM link, performing just a matrix-vector multiplication at the receiver by a pseudo-inverse matrix which is pre-evaluated offline. For 512 (1024) frequency samples per channel, the VSTF measurement takes less than 1 (10) msec to complete with computational complexity of one real-valued multiply-add operation per time sample. Relative to a naïve exhaustive three-tone-test, our algorithm is far more tolerant of ASE additive noise and its acquisition time is orders of magnitude faster.


Assuntos
Algoritmos , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Dinâmica não Linear , Telecomunicações/instrumentação
4.
Opt Express ; 20(23): 25884-901, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187406

RESUMO

DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 1): 030101, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17930185

RESUMO

We investigate a solvable model for energy-conserving nonequilibrium steady states. The time-reversal asymmetry of the dynamics leads to the violation of detailed balance and to ergodicity breaking, as manifested by the presence of dynamically inaccessible states. Two such systems in contact do not reach the same effective temperature if standard definitions are used. However, we identify the effective temperature that controls energy flow. Although this operational temperature does reach a common value upon contact, the total entropy of the joint system can decrease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA