Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36830933

RESUMO

Obesity is the main cause of metabolic complications. Fatty liver infiltration is a companion of obesity. NAFLD is associated with impaired energy metabolism with an excess of nutrients. Mitochondrial dynamics are important for the regulation of energy balance, which regulates mitochondrial function, apoptosis, and mitophagy. The aim of this study was to investigate the effect of gp130 on the components of mitochondrial dynamics in a cellular model of steatohepatitis. Addition of IL-6/gp130 contributed to an increase in the percentage of live cells and a decrease in the percentage of dead and apoptotic cells. Addition of IL-6/gp130 increased the expression of NF-kB1 gene and mitochondrial dynamics markers (MFN2 and TFAM) in HepG2 with tBHP/Oleic. Addition of IL-6 or gp130 reduced the expression of cytoprotector genes (HSF1 and HSP70) in HepG2 cell cultures with tBHP/Oleic. Increased mitochondrial dynamics gene activity protected against HepG2 cell death in the steatohepatitis model. Trans-signaling resulted in increased TFAM and MAPLC3B, and decreased DNM1L gene expression in HepG2 with tBHP/Oleic.

2.
Biomedicines ; 9(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572446

RESUMO

Interactions between receptors and ligands of the tumor necrosis factor superfamily (TNFSF) provide costimulatory signals that control the survival, proliferation, differentiation, and effector function of immune cells. All components of the TNF superfamily are associated with NF-kB functions that are not limited to cell death and may promote survival in the face of adipose tissue inflammation in obesity. Inflammation dysfunction of mitochondria is a key factor associated with insulin resistance in obesity. The aim of the study was to analyze the relationship of soluble forms of receptors and ligands of the TNF superfamily in blood plasma with mitochondrial dynamics in adipose tissue (greater omentum (GO) and subcutaneous adipose tissue (Sat)) of obese patients with and without type 2 diabetes mellitus (T2DM). Increased plasma sTNF-R1, sTNF-R2, sTNFRSF8 receptors, and ligands TNFSF12, TNFSF13, TNFSF13B are characteristic of obese patients without T2DM. The TNF-a levels in blood plasma were associated with a decrease in MFN2 gene expression in GO and IL-10 in blood plasma. The TNFSF12 levels contributed to a decrease in glucose levels, a decrease in BMI, and an increase in IL-10 levels by influencing the MFN2 gene expression in GO, which supports mitochondrial fusion.

3.
Front Genet ; 12: 612501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959145

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the most prominent and socially significant problems. The present study aimed to identify the mechanisms of interaction of critical regulators of carbohydrate metabolism using bioinformatics and experimental methods and to assess their influence on the development of T2DM. We conducted an in silico search for the relationship of hormones and adipokines and performed functional annotation of the receptors for ghrelin and incretins. Hormones and adipokines were assessed in the plasma of obese patients with and without T2DM as well as after laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB) surgeries. Incretin- and ghrelin-associated functions and metabolic processes were discovered. Low ghrelin levels were observed in obese patients without T2DM compared with healthy volunteers and the other groups. The highest ghrelin levels were observed in obese patients with T2DM. This defense mechanism against insulin resistance could be realized through the receptors G-protein-coupled receptor (GPCR), growth hormone secretagogue receptor (GHSR), and growth hormone-releasing hormone receptor (GHRHR). These receptors are associated with proliferative, inflammatory, and neurohumoral signaling pathways and regulate responses to nutrient intake. Signaling through the GPCR class unites ghrelin, glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide (GLP)-1. Ghrelin impairs carbohydrate and lipid metabolism in obese patients. Ghrelin is associated with elevated plasma levels of insulin, glucagon, and leptin. Specific activation of receptors and modulation by posttranslational modifications of ghrelin can control IR's development in obesity, which is a promising area for research.

4.
Curr Pharm Des ; 27(35): 3741-3751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823770

RESUMO

BACKGROUND: Molecular genetic mechanisms, signaling pathways, conditions, factors, and markers of the osteogenic differentiation of mesenchymal stem cells (MSCs) are being actively studied and are among the most studied areas in the field of cellular technology. This attention is largely due to the mounting contradictions in the seemingly classical knowledge and the constant updating of results in the analyzed areas. In this regard, we focus on the main classical concepts and some new factors and mechanisms that have a noticeable regulatory effect on the differentiation potential of postnatal MSCs. RESULTS: This review considers the importance of the sources of MSCs for the realization of their differentiation potential, molecular genetic factors and signaling pathways of MSC differentiation, the role of inflammatory cytokines and chemokines in osteogenesis, biomechanical signals, and the effect of conformational changes in the cellular cytoskeleton on MSC differentiation. CONCLUSION: It is concluded that it is necessary to move from studies focused on the effects of local genes to those taking multiple measurements of the gene-regulatory profile and the biomolecules critical for the implementation of numerous, incompletely studied osteogenic factors of endogenous and exogenous origin. Among the cornerstones of future (epi)genetic studies, whether osteomodulatory effects are realized through specific signaling pathways and/or whether cross-signaling with known genes drives the osteogenic differentiation of MSCs remains to be determined.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Regulação da Expressão Gênica , Osteogênese/genética , Transdução de Sinais
5.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579000

RESUMO

Interleukin (IL)-6 family cytokines act through a receptor complex with gp130 subunits. IL-6 is a pleiotropic cytokine that regulates inflammation and liver regeneration. Mitochondria are the first to respond to stress and adapt their dynamics in conditions of damage. In this regard, the study aimed to investigate the role of the IL-6 cytokine family (sIL-6Ra, gp130/sIL-6Rb, and IL-11) in the regulation of mitochondrial dynamics in the liver in obese patients and to assess the contribution of these cytokines to the pathogenesis of type 2 diabetes mellitus (T2DM). We studied 134 obese patients with and without T2DM and 41 healthy donors. We found that increasing the concentration of sIL-6Ra and gp130/sIL-6Rb protected against carbohydrate disorders in obese patients and prevented non-alcoholic fatty liver disease (NAFLD) progression in obese patients. An increase in plasma IL-6 levels is associated with decreased, mitochondrial transcription factor A (TFAM) protein production in liver biopsies in obese patients with and without T2DM. Replication, transcription, and division processes in liver biopsy were reduced in patients with T2DM. Inflammatory processes stimulate liver cell apoptosis in obese patients with T2DM. The increase in IL-11 levels is associated with decreased pro-apoptotic Bcl-2-associated X protein (BAX) protein production in obese patients with and without T2DM.


Assuntos
Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Inflamação/complicações , Interleucina-6/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Receptores de Interleucina-6/metabolismo , Adulto , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia
6.
Curr Pharm Des ; 27(28): 3105-3121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33302851

RESUMO

BACKGROUND: Despite the great interest and numerous studies, there is currently no unified standard describing the sequential manipulation with cells to obtain exosomes for clinical use.The use of exosomes has become an attractive alternative to cell therapy, since the flexible nature of these biological vesicles allows scientists to manipulate their composition to produce the desired exosomes carrying specific drugs, RNA and proteins. This study aimed to analyse scientific literature on the changes in the functional characteristics of exosomes, depending on the method of manipulation, potentially contributing to the development of negative effects in the treatment of diseases of inflammatory genesis. RESULTS: The choice of isolation method affects the expressed sets of protein markers, nucleic acids and receptors on microparticles. Various surface receptors present on the exosome membrane can be engineered to target lesions. Exosomes from healthy patients help to reduce inflammation, normalize intercellular communication and have anti-fibrotic, antioxidant, and cytoprotective effects. Exosomes can change the microenvironment, but the microenvironment can also change the composition of exosomes. CONCLUSION: Exosomes obtained from sick patients carry markers characteristic of the corresponding disease. Such exosomes can have pro-inflammatory, pro-fibrotic, cytotoxic, and oncogenic properties, and disrupt cellular cooperation. Until now, questions regarding the dose, reactions to repeated administration, and dosage regimes have not been completely resolved.


Assuntos
Exossomos , Inflamação/tratamento farmacológico , Ácidos Nucleicos , Biomarcadores , Comunicação Celular , Humanos , Oncogenes
7.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081386

RESUMO

The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fosfatos de Cálcio/química , Diferenciação Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo
8.
Biomedicines ; 8(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050138

RESUMO

Chronic inflammation may not begin with local tissue disorders, such as hypoxia, but with the accumulation of critically activated macrophages in one site. The purpose of this review is to analyze the data reported in the scientific literature on the features of the functions of macrophages and their contributions to the development of pathology in various tissues during aseptic inflammation in obese subjects. In individuals with obesity, increased migration of monocytes from the peripheral blood to various tissues, the proliferation of resident macrophages and a change in the balance between alternatively activated anti-inflammatory macrophages (M2) and pro-inflammatory classically activated macrophages (M1) towards the latter have been observed. The primary cause of some metabolic pathologies has been precisely identified as the recruitment of macrophages with an altered phenotype, which is probably typical for many other pathologies. Recent studies have identified phenotypes, such as metabolically activated M (MMe), oxidized (Mox), hemoglobin-related macrophages (Mhem and MHb), M4 and neuroimmunological macrophages (NAM, SAM), which directly and indirectly affect energy metabolism. The high heterogeneity of macrophages in tissues contributes to the involvement of these cells in the development of a wide range of immune responses, including pathological ones. The replenishment of tissue-specific macrophages occurs at the expense of infiltrating monocyte-derived macrophages (MoMFs) in the pathological process. The origin of MoMFs from a general precursor retains their common regulatory mechanisms and similar sensitivity to regulatory stimuli. This makes it possible to find universal approaches to the effect on these cells and, as a consequence, universal approaches for the treatment of various pathological conditions.

9.
Materials (Basel) ; 13(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023124

RESUMO

Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra = 2-5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1-3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating.

10.
Materials (Basel) ; 13(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992463

RESUMO

Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2-5 µm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150-300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3-0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and ß-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5-2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2-14 days) 1.5-6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.

11.
Curr Pharm Des ; 25(6): 663-669, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931856

RESUMO

In evolutionary processes, human bone marrow has formed as an organ depot of various types of cells that arise from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Vital HSC activity is controlled through molecular interactions with the niche microenvironment. The review describes current views on the formation of key molecular and cellular components of the HSC niche, which ensure maintenance of home ostasis in stem cell niches, obtained from studies of their role in regulating the proliferation and differentiation of HSCs, including the physiological, reparative and pathological remodeling of bone tissue. Due to rapid developments in biotechnology, tissue bioengineering, and regenerative medicine, information can be useful for developing biomimetic and bioinspired materials and implants that provide an effective bone/bone marrow recovery process after injuries and, to a greater extent, diseases of various etiologies.


Assuntos
Remodelação Óssea , Hematopoese , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...