Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 11(11): 10624-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346663

RESUMO

In recent years, epitaxial growth of self-assembled quantum dots has offered a way to incorporate new properties into existing solid state devices. Although the droplet heteroepitaxy method is relatively complex, it is quite relaxed with respect to the material combinations that can be used. This offers great flexibility in the systems that can be achieved. In this paper we review the structure and composition of a number of quantum dot systems grown by the droplet heteroepitaxy method, emphasizing the insights that these experiments provide with respect to the growth process. Detailed structural and composition information has been obtained using surface X-ray diffraction analyzed by the COBRA phase retrieval method. A number of interesting phenomena have been observed: penetration of the dots into the substrate ("nano-drilling") is often encountered; interdiffusion and intermixing already start when the group III droplets are deposited, and structure and composition may be very different from the one initially intended.

2.
Nat Nanotechnol ; 4(12): 835-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893522

RESUMO

Quantum dots (QDs) have applications in optoelectronic devices, quantum information processing and energy harvesting. Although the droplet epitaxy fabrication method allows for a wide range of material combinations to be used, little is known about the growth mechanisms involved. Here we apply direct X-ray methods to derive sub-ångström resolution maps of QDs crystallized from indium droplets exposed to antimony, as well as their interface with a GaAs (100) substrate. We find that the QDs form coherently and extend a few unit cells below the substrate surface. This facilitates a droplet-substrate exchange of atoms, resulting in core-shell structures that contain a surprisingly small amount of In. The work provides the first atomic-scale mapping of the interface between epitaxial QDs and a substrate, and establishes the usefulness of X-ray phasing techniques for this and similar systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA