Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 160(3): 702-711, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30507785

RESUMO

The complement system significantly contributes to the development of inflammatory and neuropathic pain, but the underlying mechanisms are poorly understood. Recently, we identified the signaling pathway responsible for thermal hypersensitivity induced by the complement system component C5a. Here, we examine the mechanisms of another important action of C5a, induction of mechanical hypersensitivity. We found that intraplantar injection of C5a produced a dose-dependent mechanical sensitization and that this effect was blocked by chemogenetic ablation of macrophages in both male and female mice. Knockout of TRPV1 or pretreatment with the TRPV1 antagonists, AMG9810 or 5'-iodoresiniferatoxin (5'-IRTX), significantly reduced C5a-induced mechanical sensitization. Notably, local administration of 5'-IRTX 90 minutes after C5a injection resulted in a slow, but complete, reversal of mechanical sensitization, indicating that TRPV1 activity was required for maintaining C5a-induced mechanical hypersensitivity. This slow reversal suggests that neurogenic inflammation and neuropeptide release may be involved. Indeed, pretreatment with a calcitonin gene-related peptide (CGRP) receptor antagonist (but not an antagonist of the neurokinin 1 receptor) prevented C5a-induced mechanical sensitization. Furthermore, intraplantar injection of CGRP produced significant mechanical sensitization in both wild-type and TRPV1 knockout mice. Taken together, these findings suggest that C5a produces mechanical sensitization by initiating macrophage-to-sensory-neuron signaling cascade that involves activation of TRPV1 and CGRP receptor as critical steps in this process.


Assuntos
Complemento C5a/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Macrófagos/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Canais de Cátion TRPV/metabolismo , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/metabolismo , Medição da Dor , Piperidinas/farmacologia , Quinazolinas/farmacologia , Quinuclidinas/farmacologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética
2.
J Neurosci ; 36(18): 5055-70, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147658

RESUMO

UNLABELLED: The complement cascade is a principal component of innate immunity. Recent studies have underscored the importance of C5a and other components of the complement system in inflammatory and neuropathic pain, although the underlying mechanisms are largely unknown. In particular, it is unclear how the complement system communicates with nociceptors and which ion channels and receptors are involved. Here we demonstrate that inflammatory thermal and mechanical hyperalgesia induced by complete Freund's adjuvant was accompanied by C5a upregulation and was markedly reduced by C5a receptor (C5aR1) knock-out or treatment with the C5aR1 antagonist PMX53. Direct administration of C5a into the mouse hindpaw produced strong thermal hyperalgesia, an effect that was absent in TRPV1 knock-out mice, and was blocked by the TRPV1 antagonist AMG9810. Immunohistochemistry of mouse plantar skin showed prominent expression of C5aR1 in macrophages. Additionally, C5a evoked strong Ca(2+) mobilization in macrophages. Macrophage depletion in transgenic macrophage Fas-induced apoptosis mice abolished C5a-dependent thermal hyperalgesia. Examination of inflammatory mediators following C5a injection revealed a rapid upregulation of NGF, a mediator known to sensitize TRPV1. Preinjection of an NGF-neutralizing antibody or Trk inhibitor GNF-5837 prevented C5a-induced thermal hyperalgesia. Notably, NGF-induced thermal hyperalgesia was unaffected by macrophage depletion. Collectively, these results suggest that complement fragment C5a induces thermal hyperalgesia by triggering macrophage-dependent signaling that involves mobilization of NGF and NGF-dependent sensitization of TRPV1. Our findings highlight the importance of macrophage-to-neuron signaling in pain processing and identify C5a, NGF, and TRPV1 as key players in this cross-cellular communication. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into how the complement system, a key component of innate immunity, regulates the development of pain hypersensitivity. We demonstrate a crucial role of the C5a receptor, C5aR1, in the development of inflammatory thermal and mechanical sensitization. By focusing on the mechanisms of C5a-induced thermal hyperalgesia, we show that this process requires recruitment of macrophages and initiation of macrophage-to-nociceptor signaling. At the molecular level, we demonstrate that this signaling depends on NGF and is mediated by the heat-sensitive nociceptive channel TRPV1. This deeper understanding of how immune cells and neurons interact to regulate pain processing is expected to facilitate mechanism-based approaches in the development of new analgesics.


Assuntos
Complemento C5a/metabolismo , Hiperalgesia/fisiopatologia , Macrófagos , Fator de Crescimento Neural , Nociceptores , Transdução de Sinais , Canais de Cátion TRPV , Acrilamidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Comunicação Celular , Complemento C5a/genética , Feminino , Temperatura Alta , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/antagonistas & inibidores , Estimulação Física , Canais de Cátion TRPV/antagonistas & inibidores
3.
J Biol Chem ; 289(45): 31349-60, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25231981

RESUMO

The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3ß (GSK3ß), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3ß, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fator de Crescimento Neural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Transdução de Sinais
4.
J Physiol ; 591(10): 2443-62, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381900

RESUMO

The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca(2+) at the release sites, the mechanisms underlying presynaptic Ca(2+) signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca(2+) clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca(2+) concentration ([Ca(2+)]i) recovery following electrical stimulation was well approximated by a monoexponential function with a ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase did not affect presynaptic [Ca(2+)]i recovery, and blocking plasmalemmal Na(+)/Ca(2+) exchange produced only a small reduction in the rate of [Ca(2+)]i recovery (∼12%) that was independent of intracellular K(+). However, [Ca(2+)]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca(2+)-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca(2+) clearance. Measurements using a mitochondria-targeted Ca(2+) indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca(2+) in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca(2+) uptake is highly sensitive to presynaptic [Ca(2+)]i elevations, and occurs at [Ca(2+)]i levels as low as ∼200-300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca(2+) transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca(2+) signalling at the first sensory synapse, and underlines the high sensitivity of the mitochondrial Ca(2+) uniporter in neurons to cytosolic Ca(2+).


Assuntos
Sinalização do Cálcio/fisiologia , Mitocôndrias/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/fisiologia , Capsaicina , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/citologia , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Sinapses/fisiologia
5.
J Biol Chem ; 287(45): 37594-609, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977251

RESUMO

The Ca(2+)/calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) is implicated in regulating dendritic and axonal development, synaptogenesis, and neuronal survival. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons are poorly understood. Here, we compare the activation of NFATc3 and NFATc4 in hippocampal and dorsal root ganglion neurons following electrically evoked elevations of intracellular Ca(2+) concentration ([Ca(2+)](i)). We find that NFATc3 undergoes rapid dephosphorylation and nuclear translocation that are essentially complete within 20 min, although NFATc4 remains phosphorylated and localized to the cytosol, only exhibiting nuclear localization following prolonged (1-3 h) depolarization. Knocking down NFATc3, but not NFATc4, strongly diminished NFAT-mediated transcription induced by mild depolarization in neurons. By analyzing NFATc3/NFATc4 chimeras, we find that the region containing the serine-rich region-1 (SRR1) mildly affects initial NFAT translocation, although the region containing the serine-proline repeats is critical for determining the magnitude of NFAT activation and nuclear localization upon depolarization. Knockdown of glycogen synthase kinase 3ß (GSK3ß) significantly increased the depolarization-induced nuclear localization of NFATc4. In contrast, inhibition of p38 or mammalian target of rapamycin (mTOR) kinases had no significant effect on nuclear import of NFATc4. Thus, electrically evoked [Ca(2+)](i) elevation in neurons rapidly and strongly activates NFATc3, whereas activation of NFATc4 requires a coincident increase in [Ca(2+)](i) and suppression of GSK3ß, with differences in the serine-proline-containing region giving rise to these distinct activation properties of NFATc3 and NFATc4.


Assuntos
Cálcio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Estimulação Elétrica , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Immunoblotting , Microscopia Confocal , Fatores de Transcrição NFATC/genética , Células PC12 , Fosforilação , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transcrição Gênica
6.
J Neurosci ; 32(35): 11942-55, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22933780

RESUMO

Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain essentially unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific Gα(i)-Gßγ-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is coexpressed in transient receptor potential vanilloid-1 (TRPV1)-expressing mouse dorsal root ganglia (DRG) neurons. NPR-C can be coimmunoprecipitated with Gα(i), and C-type natriuretic peptide (CNP) treatment induced translocation of protein kinase Cε (PKCε) to the plasma membrane of these neurons, which was inhibited by pertussis toxin pretreatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons and increased their firing frequency, an effect that was absent in DRG neurons from TRPV1(-/-) mice. CNP-induced sensitization of TRPV1 activity was attenuated by pretreatment of DRG neurons with the specific inhibitors of Gßγ, phospholipase C-ß (PLCß), or PKC, but not of protein kinase A, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Furthermore, CNP injection into mouse hindpaw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of Gßγ or TRPV1 and was also absent in TRPV1(-/-) mice. Thus, our work identifies the Gßγ-PLCß-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Peptídeo Natriurético Tipo C/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Células Cultivadas , Gânglios Espinais/metabolismo , Células HEK293 , Temperatura Alta/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Canais de Cátion TRPV/deficiência
7.
J Neurosci ; 28(19): 4904-17, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18463244

RESUMO

Phosphorylation-dependent modulation of the vanilloid receptor TRPV1 is one of the key mechanisms mediating the hyperalgesic effects of inflammatory mediators, such as prostaglandin E(2) (PGE(2)). However, little is known about the molecular organization of the TRPV1 phosphorylation complex and specifically about scaffolding proteins that position the protein kinase A (PKA) holoenzyme proximal to TRPV1 for effective and selective regulation of the receptor. Here, we demonstrate the critical role of the A-kinase anchoring protein AKAP150 in PKA-dependent modulation of TRPV1 function in adult mouse dorsal root ganglion (DRG) neurons. We found that AKAP150 is expressed in approximately 80% of TRPV1-positive DRG neurons and is coimmunoprecipitated with the capsaicin receptor. In functional studies, PKA stimulation with forskolin markedly reduced desensitization of TRPV1. This effect was blocked by the PKA selective inhibitors KT5720 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylicacid hexyl ester] and H89 (N-[2-(p-bromo-cinnamylamino)-ethyl]-5-isoquinoline-sulfon-amide 2HCl), as well as by the AKAP inhibitory peptide Ht31. Similarly, PGE(2) decreased TRPV1 desensitization in a manner sensitive to the PKA inhibitor KT5720. Both the forskolin and PGE(2) effects were strongly impaired in DRG neurons from knock-in mice that express a mutant AKAP150 lacking the PKA-binding domain (Delta36 mice). Protein kinase C-dependent sensitization of TRPV1 remained intact in Delta36 mice. The PGE(2)/PKA signaling defect in DRG neurons from Delta36 mice was rescued by overexpressing the full-length human ortholog of AKAP150 in these cells. In behavioral testing, PGE(2)-induced thermal hyperalgesia was significantly diminished in Delta36 mice. Together, these data suggest that PKA anchoring by AKAP150 is essential for the enhancement of TRPV1 function by activation of the PGE(2)/PKA signaling pathway.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Neurônios Aferentes/metabolismo , Canais de Cátion TRPV/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/farmacologia , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosforilação , Proteína Quinase C/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...