Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 55(7): 2042-50, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16804074

RESUMO

Fasting hyperglycemia, a prominent finding in diabetes, is primarily due to increased gluconeogenesis. The transcription factor Foxo1 links insulin signaling to decreased transcription of PEPCK and glucose-6-phosphatase (G6Pase) and provides a possible therapeutic target in insulin-resistant states. Synthetic, optimized antisense oligonucleotides (ASOs) specifically inhibit Foxo1 expression. Here we show the effect of such therapy on insulin resistance in mice with diet-induced obesity (DIO). Reducing Foxo1 mRNA expression with ASO therapy in mouse hepatocytes decreased levels of Foxo1 protein and mRNA expression of PEPCK by 48 +/- 4% and G6Pase by 64 +/- 3%. In mice with DIO and insulin resistance, Foxo1 ASO therapy lowered plasma glucose concentration and the rate of basal endogenous glucose production. In addition, Foxo1 ASO therapy lowered both hepatic triglyceride and diacylglycerol content and improved hepatic insulin sensitivity. Foxo1 ASO also improved adipocyte insulin action. At a tissue-specific level, this manifested as improved insulin-mediated 2-deoxyglucose uptake and suppression of lipolysis. On a whole-body level, the result was improved glucose tolerance after an intraperitoneal glucose load and increased insulin-stimulated whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp. In conclusion, Foxo1 ASO therapy improved both hepatic insulin and peripheral insulin action. Foxo1 is a potential therapeutic target for improving insulin resistance.


Assuntos
Fatores de Transcrição Forkhead/genética , Insulina/fisiologia , Fígado/fisiologia , Oligonucleotídeos Antissenso , Animais , Glicemia/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/deficiência , Cinética , Camundongos , Transaminases/metabolismo
2.
Genes Dev ; 18(20): 2469-73, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15466160

RESUMO

The Notch signaling pathway is essential for embryonic vascular development in vertebrates. Here we show that mouse embryos heterozygous for a targeted mutation in the gene encoding the DLL4 ligand exhibit haploinsufficient lethality because of defects in vascular remodeling. We also describe vascular defects in embryos homozygous for a mutation in the Rbpsuh gene, which encodes the primary transcriptional mediator of Notch signaling. Conditional inactivation of Rpbsuh function demonstrates that Notch activation is essential in the endothelial cell lineage. Notch pathway mutant embryos exhibit defects in arterial specification of nascent blood vessels and develop arteriovenous malformations. These results demonstrate that vascular remodeling in the mouse embryo is sensitive to Dll4 gene dosage and that Notch activation in endothelial cells is essential for embryonic vascular remodeling.


Assuntos
Vasos Sanguíneos/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Animais , Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/anatomia & histologia , Primers do DNA , Proteínas de Ligação a DNA/genética , Células Endoteliais/fisiologia , Dosagem de Genes , Genótipo , Técnicas Histológicas , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Camundongos , Mutação/genética , Proteínas Nucleares/genética , Receptores Notch , Transdução de Sinais/genética
3.
J Cell Biol ; 162(4): 535-41, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12925703

RESUMO

Insulin-like growth factors promote myoblast differentiation through phosphoinositol 3-kinase and Akt signaling. Akt substrates required for myogenic differentiation are unknown. Forkhead transcription factors of the forkhead box gene, group O (Foxo) subfamily are phosphorylated in an insulin-responsive manner by phosphatidylinositol 3-kinase-dependent kinases. Phosphorylation leads to nuclear exclusion and inactivation. We show that a constitutively active Foxo1 mutant inhibits differentiation of C2C12 cells and prevents myotube differentiation induced by constitutively active Akt. In contrast, a transcriptionally inactive mutant Foxo1 partially rescues inhibition of C2C12 differentiation mediated by wortmannin, but not by rapamycin, and is able to induce aggregation-independent myogenic conversion of teratocarcinoma cells. Inhibition of Foxo expression by siRNA resulted in more efficient differentiation, associated with increased myosin expression. These observations indicate that Foxo proteins are key effectors of Akt-dependent myogenesis.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos/fisiologia , Somatomedinas/metabolismo , Fatores de Transcrição/genética , Androstadienos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead , Camundongos , Mutação , Mioblastos/efeitos dos fármacos , Isoformas de Proteínas , Sirolimo/farmacologia , Fatores de Transcrição/biossíntese , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA